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AI for science

Machine Learning for Science: 
Bridging Data-Driven and Mechanistic Modelling

An emerging agenda



Summary
Today’s scientific challenges are characterised 
by complexity. Interconnected natural, technological, 
and human systems are influenced by forces acting 
across time- and spatial-scales, resulting in complex 
interactions and emergent behaviours. Understand-
ing these phenomena – and leveraging scientific 
advances to deliver innovative solutions to improve 
society’s health, wealth, and wellbeing – requires new 
ways of analysing complex systems.

Artificial intelligence (AI) offers a set of tools 
to help make sense of this complexity. In an envi-
ronment where more data is available from more 
sources than ever before – and at scales from 
the atomic to the astronomical – the analytical 
tools provided by recent advances in AI could 
play an important role in unlocking a new wave 
of research and innovation. The term AI today 
describes a collection of tools and methods, 
which replicate aspects of intelligence in computer 
systems. Many recent advances in the field stem 
from progress in machine learning, an approach to 
AI in which computer systems learn how to perform 
a task, based on data.

Signals of the potential for AI in science can 
already be seen in many domains. AI has been 
deployed in climate science to investigate how 
Earth’s systems are responding to climate change; 
in agricultural science to monitor animal health; in 
development studies, to support communities to 
manage local resources more effectively; in astro-
physics to understand the properties of black holes, 
dark matter, and exoplanets; and in developmental 
biology to map pathways of cellular development 
from genes to organs. These successes illustrate 
the wider advances that AI could enable in science. 
In so doing, these applications also offer insights 
into the science of AI, suggesting pathways to 
understand the nature of intelligence and the learn-
ing strategies that can deliver intelligent behaviour 
in computer systems.

Further progress will require a new genera-
tion of AI models. AI for science calls for model-
ling approaches that can: facilitate sophisticated 
simulations of natural, physical, or social systems, 
enabling researchers to use data to interrogate the 

forces that shape such systems; untangle compli-
cated cause-effect relationships by combining the 
ability to learn from data with structured knowledge 
of the world; and work adaptively with domain 
experts, assisting them in the lab and connecting 
data-derived insights to pre-existing domain knowl-
edge. Creating these models will disrupt traditional 
divides between disciplines and between data-driven 
and mechanistic modelling.

The roadmap presented here suggests how 
these different communities can collaborate to 
deliver a new wave of progress in AI and its appli-
cation for scientific discovery. By coalescing around 
shared challenges for AI in science, the research 
community can accelerate technical progress. 
By creating user-friendly toolkits, and implementing 
best practices in software and data engineering, 
researchers can support wider adoption of effective 
AI methods. By investing in people working at the 
interface of AI and science – through skills-building, 
convening, and support for interdisciplinary col-
laborations – research institutions can encourage 
talented researchers to develop and adopt new AI 
for science methods. By contributing to a community 
of research and practice, individual researchers and 
institutions can help share insights and expand the 
pool of researchers working at the interface of AI and 
science. Together, these actions can drive a para-
digm shift in science, enabling progress in AI and 
unlocking a new wave of AI-enabled innovations.

The transformative potential of AI stems from 
its widespread applicability across disciplines, and 
will only be achieved through integration across 
research domains. AI for science is a rendezvous 
point. It brings together expertise from AI and appli-
cation domains; combines modelling knowledge 
with engineering know-how; and relies on collabo-
ration across disciplines and between humans and 
machines. Alongside technical advances, the next 
wave of progress in the field will come from build-
ing a community of machine learning researchers, 
domain experts, citizen scientists, and engineers 
working together to design and deploy effective 
AI tools.
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Introduction: bridging data driven 
and mechanistic modelling

1	 This quote is attributed to Stephen Hawking, in an interview with the San Jose Mercury News in January 2000.
2	 Rittel, H., and Webber, M.M. (1973) Dilemmas in a general theory of planning. Policy Sciences 4, 155–69. (Reprinted in N. Cross, 

ed. Developments in design methodology, pp. 135–44. Chichester: J. Wiley & Sons, 1984).
3	 While not the only branch of the field, machine learning is the approach to AI that has delivered many of the recent advances 

in AI. Machine learning is an approach to AI in which models process data, learning from that data to identify patterns or make 
predictions. In this document, the terms machine learning and AI are used interchangeably.

4	 These examples are inspired by talks given at the Dagstuhl seminar; these are provided later in the document. This example 
is inspired by a talk by Markus Reichstein.

5	 This example is inspired by Ieva Kazlauskaitė’s talk.
6	 This example is inspired by Dina Machuve’s talk.
7	 This example is inspired by Siddharth Mishra-Sharma’s talk.
8	 This example is inspired by Maren Büttner’s talk.

The 21st century has been characterised as the  
century of complexity.1 Shifting social, economic,  
environmental, and technological forces have 
created increasingly interconnected communites, 
affected by ‘wicked’ problems in domains such as 
health, climate, and economics.2 This complexity 
is reflected in today’s scientific agenda: whether in 
natural, physical, medical, environmental, or social 
sciences, researchers are often interested in the 
dynamics of complex systems and the phenomena 
that emerge from them. Science has always pro-
ceeded through the collection of data.Through their 
experiments and observations, researchers collect 
data about the world, use this data to develop mod-
els or theories of how the world works, make predic-
tions from those models, then test those predictions, 
leading to further refinements to the model and the 
underpinning theory. Digitisation of daily activities – 
in the lab, and elsewhere – means that researchers 
today have access to more data from a greater 
range of sources than ever before. In parallel, more 
sophisticated tools to collect data have opened new 
scales of scientific inquiry, from detailed patterns of 
gene expression to light signals from other galaxies. 
Data proliferation is both a signal of the complexity 
of today’s environment, and an opportunity to make 
sense of such complexity.

Advances in artificial intelligence (AI) have 
produced new analytical tools to make sense of 
these data sources. The term ‘AI’ today describes 
a collection of methods and approaches to create 
computer systems that can perform tasks that 

would typically be associated with ‘intelligent’ behav-
iour in living sytems.3 In this document, the term AI is 
used broadly, to refer to algorithmic decision-making 
systems that combine data, mathematical models, 
and compute power to make predictions about 
the world.

AI is already unlocking progress across 
research disciplines: 

	● In Earth sciences, it is helping researchers 
investigate how different parts of the Earth’s 
biosphere interact, and are affected by cli-
mate change.4

	● In climate science, it supports modelling 
efforts to reconstruct historical climate patterns, 
enabling more accurate predictions of future 
climate variability.5

	● In agricultural science, it is helping farmers 
access faster diagnoses of animal diseases, 
enabling more effective responses.6

	● In astrophysics, it is advancing understandings 
of the nature of dark matter and its role in 
the Universe.7

	● In developmental biology, it is generating 
insights into the genetic processes that 
shape how cells develop and differentiate 
into specialist roles.8
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	● In environmental science, it allows researchers 
to analyse the features of natural environ-
ments more accurately, aiding land and 
resource managers.9

	● In neuroscience, it can help model how different 
neural circuits fire to deliver different behaviours 
in animals.10

The diversity of these successes illustrates the 
transformative potential of AI for research across 
the natural, physical, social, medical, and com-
puter sciences, arts, humanities, and engineering. 
By enabling researchers to extract insights from 
a greater volume of data, drawn from a wider variety 
of sources, and operating across multiple dimensions 
and scales, AI could unlock new understandings 
of the world. In so doing, AI could influence the 
conduct of science itself. AI-enabled analytical tools 
mean researchers can now generate sophisticated 
simulations of natural or physical systems, creating 
‘digital siblings’ of real-world systems that can be 
used for experimentation and analysis. Machine 
learning models that combine the ability to learn 
adaptively from data with the ability to make struc-
tured predictions reflecting the laws of nature can 
help researchers untangle the web of cause-effect 
relationships that drive the dynamics of complex 
systems. AI-assisted laboratory processes could 
increase the efficiency of experiments, and support 
researchers to develop and test new hypotheses.

Achieving this potential will require advances 
in the science of AI, the design of AI systems that 
serve scientific goals, and the engineering of such 
systems to operate safely and effectively in prac-
tice. These advances in turn rely on interdisciplinary 

9	 This example is inspired by Christian Igel’s talk.
10	 This example is inspired by Jakob Macke’s talk.

collaborations that connect domain expertise to 
the development of machine learning models, and 
feed the insights generated by such models back 
into the domain of study. As interest in the potential 
of AI to drive a new wave of research grows, the 
challenge for the field is to identify technical and 
operational strategies to realise this potential. In 
the process, new questions arise about the future of 
‘AI for science’; whether this will emerge as a distinct 
field, characterised by its own research agenda and 
priorities, or whether its benefits can be best achieved 
through separate, domain-focused sub-fields, which 
seek to integrate AI into business-as-usual across 
research disciplines.

In response, this document proposes 
a roadmap for ‘AI for science’. Synthesising insights 
from recent attempts to deploy AI for scientific 
discovery, it proposes a research agenda that can 
help develop more powerful AI tools and the areas 
for action that can provide an enabling environ-
ment for their deployment. It starts by exploring 
core research themes – in simulation, causality, 
and encoding domain knowledge – then draws from 
these ideas to propose a research agenda and 
action plan to support further progress. The ideas 
presented are inspired by discussions at ‘Machine 
Learning for Science: Bridging Mechanistic and 
Data‑Driven Modelling Approaches’, a Dagstuhl 
seminar convened in September 2022 (see Annex 1).

Abstracts from the talks given at the seminar 
are shown throughout this document. These talks 
and the discussions they provoked should be credited 
for the ideas that have shaped it. Thank you to the 
speakers and participants for their thoughtful contri-
butions to both the seminar and the development 
of this work.

http://systems.AI
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Snapshots of AI in science
Across domains, AI is being deployed to advance 
the frontiers of science. The snapshots below 
introduce some current areas of research in AI for 
science, and explore the issues raised by these 
research projects. Across these snapshots, some 
common themes emerge:

	● How can researchers most effectively com-
bine observations, data-driven models, and 
physical models to enhance understanding 
of complex systems? To answer this question, 
methods are needed to integrate different 
types of model, operating across different 
levels of granularity, while managing the 
impact ofthe uncertainties that emerge when 
a machine learning model is integrated in 
a wider system. New approaches to simulation 
and emulation can support progress in tackling 
these challenges, alongside new strategies 

for examining the robustness or performance 
of machine learning models.

	● How do the outputs from an AI system align 
with what researchers already know about the 
world, and how can such systems help uncover 
causal relationships in data? Advances in causal 
machine learning are needed to connect the 
laws and principles already established in many 
areas of research with data-driven methods.

	● How can AI be integrated into the scientific pro-
cess safely and robustly? Effective integration 
will rely on the ability to encode domain knowl-
edge in AI systems, the design of interfaces that 
facilitate interaction between humans and AI, 
and the development of mechanisms for shar-
ing knowledge and know-how about how to use 
AI in practice.

In Earth sciences

11	 This example is inspired by Markus Reichstein’s talk, the abstract for which is provided later in this document.
12	 Summers, T., Mackie, E., Ueno, R., Simpson, C., Hosking, J.S., Suciu, T., Coburn, A., et al. (2022) Localised 

impacts and economic implications from high temperature disruption days under climate change. Climate Resilience 
and Sustainability https://doi.org/10.1002/cli2.35

The Earth is a complex system,11 comprised 
of terrestrial, marine, and atmospheric bio-
spheres that interact with each other and are 
shaped by biological, chemical, and physical 
processes that exchange energy across scales 
from the molecular to the planetary. It is also 
a unique system: researchers have yet to 
discover other planets that replicate its dynam-
ics. Studies of the Earth system therefore rely 
on observations and physical models, which 
describe the dynamics of energy exchange 
from first principles and use those principles 
to build models of the Earth’s sub-systems. 
As climate change perturbs this complex system, 
it is increasingly important to have accurate 
models that can be used to analyse how the 

Earth will respond to increasing carbon dioxide 
levels. The challenge for Earth system science 
is to build more complex models that represent 
the web of relationships between biospheres 
under changing conditions, without generating 
overwhelming uncertainties and while gener-
ating actionable insights that can be used by 
individuals, organisations, and policymakers 
to understand the localised impact of changing 
environmental conditions.12

For example, how much carbon dioxide 
is absorbed by different biospheres can be 
affected by diverse factors including volume 
and type of vegetation cover, water and 
drought stress in different areas, and local 
temperature, which have implications for how 

https://doi.org/10.1002/cli2.35
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carbon dioxide contributes to climate change. 
Researchers have access to data that describes 
local uptake of carbon dioxide by some eco-
systems, such as tropical rainforest, European 
beech forest, or Mediterranean savanna, for 
example, but lack sufficient observational 
coverage to scale from these local observations 
to accurate global representations of carbon 
exchange. One response to this challenge is 
to leverage data-driven models to knit together 
the different mechanistic models that describe 
(for example) carbon, water, and energy cycles 
in different biospheres.

By starting with observational data and 
combining this with physics-informed model-
ling, researchers can leverage machine learn-
ing to create simulations that can generate 
new understandings of how complex systems 
function. Taking this approach, the FLUXNET 
project combines observed data on carbon 
emissions from different sources to generate 
a data-driven picture of global carbon dynamics. 
By combining data across scales to establish 
a statistical model of global carbon dynamics, 
this project can generate simulations of how 
the Earth breathes.13 The ability to integrate 
across scales and combine models of differ-
ent Earth sub-systems can also contribute to 
wider efforts to build a ‘digital twin’ of the Earth, 
with the aim of better understanding the impli-
cations of climate change across biospheres 
and communities.

As the Earth’s climate changes,14 researchers 
anticipate that local environmental conditions 
will change and extreme weather events will 

13	 Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, 
D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., 
Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D. (2010) Terrestrial 
gross carbon dioxide uptake: global distribution and covariation with climate, Science, 329 (5993) (2010), 
pp. 834–838, https://doi.org/10.1126/science.1184984

14	 This example is inspired by Markus Reichstein’s talk, the abstract for which is provided later in this document.
15	 Under conditions of extreme temperature, patterns of stomatal opening and closing in plants changes. See, for 

example: Marchin, R.M., Backes, D., Ossola, A., Leishman, M.R., Tjoelker, M.G., & Ellsworth, D.S. (2022). Extreme 
heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Global Change 
Biology, 28, 1133–1146. https://doi.org/10.1111/gcb.15976

increase. Understanding the impact of these 
changes is important for those seeking to 
develop appropriate responses, for example 
developing environmental management plans 
or planning human activities.

How a landscape responds to changing 
environmental conditions will vary depend-
ing on the local climate, characteristics of the 
terrain (vegetation type, for example), and-
human activities in the area. Under changing 
climate conditions, as extrapolation beyond 
known limits becomes necessary, the assump-
tions or abstractions that form the basis of 
a model can be rendered invalid. Relying 
solely on either mechanistic descriptions of the 
system – the impact of temperature on plant 
growth, for example15 – or statistical models 
could result in inaccuracies. Machine learning 
can help respond to this challenge, through 
the creation of hybrid models that combine an 
understanding of the physical laws with model 
parameters learned from data. Researchers 
often already have access to known physical 
parameters for a system (for example, the 
equations that govern how water evaporates 
to air). These parameters can be fed into 
a machine learning model that will learn other 
patterns. Known equations specify the chemi-
cal and physical processes; machine learning 
can then help elucidate the other biological 
forces at play. Integrating this physical struc-
ture in the model helps make it both more 
interpretable to the domain scientists and more 
reliable in its predictions. The resulting model 
can accurately forecast the impact of climate 
change on the features of local landscapes, 

https://doi.org/10.1126/science.1184984
https://doi.org/10.1111/gcb.15976


7Snapshots of AI in science

operating within the bounds set by the laws 
of physics.16

Ice loss17 has been the greatest contributor 
to sea-level rise in recent decades.18 Large 
volumes of fresh water are stored as ice: 
NASA estimates that if all the world’s gla-
ciers and ice sheets melted, sea levels glob-
ally would rise by over 60 metres, flooding 
all coastal cities.19 Researchers can estimate 
the contribution that melting ice makes to 
sea level rise through mechanistic models 
that describe the underlying physical pro-
cesses (that turn ice to water) and through 
observational data about the velocity of 
ice sheet movement. Machine learning 
could offer a toolkit to make these models 
more accurate, connecting ice sheet mod-
els to ocean and atmospheric models, and 
integrating different data types in hybrid 
mechanistic‑data models.

16	 Requena-Mesa, C., Reichstein, M., Mahecha, M., Kraft, B., Denzler, J. (2019). Predicting Landscapes 
from Environmental Conditions Using Generative Networks. In: Fink, G., Frintrop, S., Jiang, X. (eds) 
Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science, vol 11824. Springer, Cham. 
https://doi.org/10.48550/arXiv.1909.10296

17	 This example is inspired by Ieva Kazlauskaitė’s talk, the abstract for which is provided later in this document.
18	 IPCC (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O., 

Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M. 
Okem, A.  Petzold, J. Rama, B. Weyer N.M. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, 
USA, pp. 3–35. https://doi.org/10.1017/9781009157964.001, www.ipcc.ch/srocc

19	 NASA, Understanding sea level, available from: https://sealevel.nasa.gov/understanding-sea-level/global-sea-level/
ice-melt

Efforts to build such models, however, 
illustrate the complexity of designing tools to 
meet domain needs. Projects in this space 
have considered emulating the ice sheet system – 
or its individual components – to see if models 
could be run faster; though successful meth-
odologically, it has not been clear that such 
efforts address a clear research need. Another 
approach is to use machine learning to stream-
line simulations, for instance by identifying the 
most effective level of granularity for different 
models (is a spatial breakdown of 5km or 10km 
more interesting?). An important lesson from 
such collaborations is the specificity of domain 
needs: machine learning is a tool for research, 
but just because researchers have a hammer, 
does not mean every research problem is a nail. 
Effectively deploying machine learning for 
research requires both suitable AI toolkits 
and an understanding of which toolkits are 
best deployed for which challenges.

https://doi.org/10.48550/arXiv.1909.10296
https://doi.org/10.1017/9781009157964.001
http://www.ipcc.ch/srocc
https://sealevel.nasa.gov/understanding-sea-level/global-sea-level/ice-melt
https://sealevel.nasa.gov/understanding-sea-level/global-sea-level/ice-melt
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In environmental and agricultural sciences

20	 This example is inspired by Dina Machuve’s talk, the abstract for which is provided later in this document.
21	 Machuve D, Nwankwo E, Mduma N, Mbelwa J. (2022) Poultry diseases diagnostics models using deep learning. 

Front Artif Intell. 5, 733345. https://doi.org/10.3389/frai.2022.733345. Erratum in: Front Artif Intell. 2022 Sep 01; 
5:1016695. PMID: 35978651; PMCID: PMC9376463.

22	 This example is inspired by Christian Igel’s talk, the abstract for which is provided later in this document.
23	 Ritchie, H. and Roser, M. (2021) – “Forests and Deforestation”. Published online at OurWorldInData.org, 

https://ourworldindata.org/forests-and-deforestation

Poultry farming20 is a vital source of income 
and food for many communities in Tanzania. 
4.6 million households in the country raise 
approximately 36 million chickens, but despite 
the importance of this activity, poultry farming 
suffers from relatively low productivity due 
to the prevalence of disease. Efforts to tackle 
poultry diseases such as Salmonella, Newcas-
tle disease, and Coccidiosis are held back by 
the accessibility of diagnostic processes and 
lack of data. Diagnosis currently requires lab 
analysis of droppings, which can take 3–4 days. 
Once disease is confirmed, farmers often lose 
their entire farm’s flock.

Farm-level tests and diagnostics could 
increase the effectiveness of disease sur-
veillance and treatment, giving farmers rapid 
access to information about the diseases affect-
ing their flock and action plans about how to 
manage outbreaks. With mobile phones ubiq-
uitous across the country – there are almost 
49 million mobile phone subscriptions in 
Tanzania – there are opportunities for new 
uses of local data to detect disease outbreaks.

By collecting images of droppings from 
farms, researchers have been creating 
a dataset to train a machine learning system 
that can identify the symptoms of these diseases. 
Fecal images are taken on farms, annotated 
with diagnostic information from agricultural 
disease experts and the results of lab tests, 
then used to train an image recognition system 
to automate the diagnosis process.21 System 
robustness and accuracy is vital, given the 
significant implications of a positive diagnosis, 
and careful design is necessary to incentivise 
farmers to make use of the app.

Collaboration with experts from different 
domains is central to developing this system.

Input from farmers is needed to collect data 
and test the system in practice; from veteri-
nary pathologists to help annotate the data 
and ensure the system’s accuracy; and from 
technologists to develop an AI system that 
is effective in deployment as an app on mobile 
phones. These collaborations also open opportu-
nities for new forms of citizen science, as farmers 
and local communities are engaged in efforts to 
develop and maintain an open toolkit for disease 
diagnosis, providing a gateway for communities 
to take ownership of machine learning as a tool 
to serve their needs.

Trees and forests22 play a crucial role in 
maintaining healthy ecosystems. Despite this, 
an estimated ten million hectares of forest are 
lost globally each year due to reforestation, with 
only around half of this balanced by tree-plant-
ing efforts.23 Africa experienced an annual rate 
of forest loss of approximately 3.9 million hectares 
per year from 2010–2020. This loss has impli-
cations for biodiversity and people, with trees 
a vital contributor to ecosystem services such 
as carbon storage, food provision, and shelter. 
In this shifting landscape, understanding the 
number and distribution of trees is important 
for the development of forestry management 
plans and for understanding the carbon storage 
implications of changes to land use.

To estimate the number and biomass 
of trees in the West African Sahara and Sahel, 
researchers have used satellite imagery of 
90,000 trees from 400 sampling sites to create 
a labelled dataset for use in machine learning. 
Using an image segmentation tool to identify 
the location of trees, an automated system was 
able to count the number of trees, with domain 
experts guiding the system to distinguish trees 

https://doi.org/10.3389/frai.2022.733345
http://OurWorldInData.org
https://ourworldindata.org/forests-and-deforestation
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from surrounding vegetation. This tree count 
can then be used to estimate the biomass of 
trees in the area, and predict the amount of 
carbon they store; the prediction is generated 
using allometric calculations, which translate 
the properties of the tree to its carbon storage 
potential. In this approach, machine learning 
measures the properties of the ecosystem from 
satellite images, then these properties are used 
to feed mechanistic models that describe the 
ecosystem’s physical functions.24 This opens 
the possibility of new tools to estimate tree 
cover, leveraging these insights for more effec-
tive environmental management. However, in 
the process, care is needed to manage the type 
and nature of the uncertainties created by differ-
ent modelling approaches. Different allometric 
models, for example, can be more or less suited 
to different types of tree cover,25 meaning that 
the method for estimating biomass from satellite 
imagery can be subject to biases when applied 
across a large area. A small error in the calcu-
lation of the biomass from one tree can have 
a cumulatively large effect when that method 
is scaled to country-level. The type and nature 
of such uncertainties need to be considered 
when a machine learning model is used within 
a wider system.

Vector borne diseases26 account for more 
than 17% of diseases in people and over 
700,000 deaths annually.27 Changes to the 
climate and patterns of land use, amongst 

24	 Brandt, M., Tucker, C.J., Kariryaa, A. et al. (2020) An unexpectedly large count of trees in the West African Sahara 
and Sahel. Nature 587, 78–82. https://doi.org/10.1038/s41586-020-2824-5

25	 Hiernaux, P. and Issoufou, B.H., Igel, C., Kariryaa, A., Kourouma, M., Chave, J., Mougin, E. and Savadogo, P. (2023) 
Allometric Equations to Estimate the Dry Mass of Sahel Woody Plants from Very-High Resolution Satellite Imagery. 
Forest Ecology and Management, 529, https://doi.org/10.1016/j.foreco.2022.120653

26	 This example is inspired by Christian Igel’s talk, the abstract for which is provided later in this document.
27	 Hernandez-Triana, L. and Bell, S. (2022) Taking the sting out of vector borne diseases, APHA Science Blog, available 

at: https://aphascience.blog.gov.uk/2022/07/06/vector-borne-diseases
28	 For example: Quinn, J. (2021) Mapping Africa’s Buildings with Satellite Imagery, Google Research Blog, available at: 

https://ai.googleblog.com/2021/07/mapping-africas-buildings-with/html
29	 Lindsay, S.W., Jawara, M., Mwesigwa, J., Achan, J., Bayoh, N., Bradley, J., Kandeh, B., Kirby, M.J., Knudsen, J., 

Macdonald, M., Pinder, M., Tusting, L.S., Weiss, D.J., Wilson, A.L. and D’Alessandro, U. (2019) Reduced mosquito 
survival in metal-roof houses may contribute to a decline in malaria transmission in sub-Saharan Africa. Scientific 
Reports 9, 7770, https://doi.org/10.1038/s41598–019–43816–0

30	 Royal Danish Academy (2022) New research to combat malaria mosquitoes in African metropolises, available at: 
https://royaldanishacademy.com/news/ny-forskning-skal-bekaempe-malariamyg-i-afrikanske-storbyer

other factors, are bringing human populations 
into contact with new vectors of disease. In 
Africa, for example, populations of mosquitoes 
carrying malaria that might previously have 
been found mainly in rural areas are spreading 
into cities.

Tools to characterise building features from 
satellite imagery have already been developed 
and made available for use.28 Leveraging these 
to analyse multi-scale data – from household to 
city-level – researchers are investigating how 
the built environment influences people’s risk 
of contracting mosquito-borne disease. For 
example, it has been found that the prevalence 
of mosquitos in an area is related to the type of 
roofing used in construction; metal roofing tends 
to be associated with lower mosquito preva-
lence, potentially due to the high temperatures 
they attract during the day.29 These insights can 
be deployed by policymakers in the develop-
ment of appropriate policy responses.30

Decisions made on the basis of insights 
generated by machine learning models will 
be influenced by the assumptions made in 
those models. In the context of housing, for 
example, the decision about which type of 
housing to identify as ‘at risk’ or which build-
ing materials to flag as ‘problematic’ may 
have significant consequences for individuals 
or communities. When those decisions are 
assimilated within a model or analysis before 
a downstream ‘policy decision’, the implica-
tions for those communities of different courses 

https://doi.org/10.1038/s41586-020-2824-5
https://doi.org/10.1016/j.foreco.2022.120653
https://aphascience.blog.gov.uk/2022/07/06/vector-borne-diseases
https://ai.googleblog.com/2021/07/mapping-africas-buildings-with.html
https://doi.org/10.1038/s41598-019-43816-0
https://royaldanishacademy.com/news/ny-forskning-skal-bekaempe-malariamyg-i-afrikanske-storbyer
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of action may be obscured, creating a risk of 
marginalising or disadvantaging individuals 
or groups. The assumptions are built into the 

model, and how visible those assumptions 
are made to different user groups, can have 
significant social and scientific consequences.

In physical sciences

31	 This example is inspired by Siddharth Mishra Sharma’s talk, as well as insights from Gilles Louppe’s talk, 
the abstracts for which are provided later in this document.

32	 NASA, Dark Energy, Dark Matter, available at: https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
33	 For example: Aad, G., Abat, E., Abdallah, J., Abdelalim, A.A., Abdesselam, A., Abdinov, O., Abi, B.A., Abolins, M., 

Abramowicz, H., Acerbi, E., Acharya, B.S., Achenbach, R., Ackers, M., Adams, D.L., Adamyan, F., Addy, T.N., 
Aderholz, M., Adorisio, C., Adragna, P., … Zychacek, V. (2008). The ATLAS Experiment at the CERN Large Hadron 
Collider. Journal of Instrumentation, 3(S08003). https://doi.org/10.1088/1748-0221/3/08/S08003

34	 Mishra-Sharma, S. and Yang, G. (2022) Strong Lensing Source Reconstruction Using Continuous Neural Fields, 
arXiv:2206.14820 [astro-ph.CO], https://doi.org/10.48550/arXiv.2206.14820

Understanding the nature of dark matter31 
is one of the biggest unsolved challenges of 
particle physics today. The matter that research-
ers can measure using cosmological observations 
makes up about 5% of the Universe.32 While 
not directly observable, evidence for the exist-
ence of dark matter can be found in a variety 
of phenomena not otherwise accounted for by 
currently known laws of physics: stars rotate 
around galaxies faster than might be expected; 
the pattern of fluctuations in primordial micro-
wave observations indicate that there were 
sources of gravitation in the early Universe 
beyond ordinary matter; light bends around 
galaxy clusters due to gravitational effects 
from dark matter.

Despite knowing that dark matter exists 
and that it plays an important role in how the 
Universe formed, its particle composition 
or properties remain unclear. Investigating 
these properties is the focus of large-scale 
experimental studies, for example in parti-
cle colliders.33 A variety of data could contain 
information about the properties of dark matter, 
from studies of cosmic rays, cosmic microwave 
radiation, properties of stars, gravitational 
lensing studies, and more. These datasets are 
complex: they are typically high-dimensional, 
represent complex relationships between 
the micro-physics and macro-phenomena 

in a system, and may contain artefacts or noise 
from the instruments used to collect them. 
To make use of this data, researchers need 
to account for this complexity and tether their 
models to assumptions about physical processes.

The challenge for machine learning in 
astro-particle physics research is to extract 
insights about the particle composition of dark 
matter from the macroscopic patterns that can 
be observed in the Universe. For example, 
gravitational lensing is a phenomenon in which 
the pathway of light traveling through the Uni-
verse is deflected due to the influence of gravity 
from an intervening mass, distorting how this 
background light is observed.34 Gravitational 
lensing effects arising from dark matter clumps 
(“substructure”) could hold information about 
the structure of dark matter at a microscopic 
level. To infer the presence of substructure 
of these lensing systems, researchers need 
models that describe the effect of dark matter, 
ordinary matter, and the wider environment 
while simultaneously modelling the form of the 
background light, which can be a morpholog-
ically-complex galaxy. By letting a machine 
learning model, like a neural network, describe 
the complex background light source, it is possible 
to make predictions about how the light might 
appear after being lensed with and also without 
the impact of dark matter clumps. By performing 

https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.48550/arXiv.2206.14820
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many simulations considering various possi-
bilities, researchers can compare these with 
observations from telescopes and understand 
which dark matter theories are compatible with 
the data.

Rapid progress in this field is generating 
a variety of models and approaches. In its next 
wave of development, further research is needed 
to test how trustworthy these methods are, 
by assessing their performance in generating 
physically plausible results and robust con-
straints on the properties of dark matter and 
other forms of new physics.35

How particles move36 across their environment 
is a shared area of interest for many domains. 
In chemistry, for example, researchers are often 
interested in how molecules diffuse, and where 
they end up distributed, based on the physical 
forces that shape their movement over time. 

35	 Dvorkin, C., Mishra-Sharma, S., Nord, B., Villar, V.A., Avestruz, C., Bechtol, K., Ćiprijanović, A., Connolly, A.J., 
Garrison, L.H., Narayan, G. and Villaescusa-Navarro, F. (2022) Machine learning and cosmology, arXiv:2203.08056 
[hep-ph], https://doi.org/10.48550/arXiv.2203.08056

36	 This example is inspired by Francisco Vargas’s talk, the abstract for which is provided later in this document.
37	 Examples of agent-based models for crowd simulation include: Makinoshima, F., Oishi, Y. (2022) Crowd flow 

forecasting via agent-based simulations with sequential latent parameter estimation from aggregate observation. 
Sci Rep 12, 11168. https://doi.org/10.1038/s41598–022–14646–4 and Malleson, N., Minors, K., Kieu, L., Ward, J.A., 
West, A. and Heppenstall, A (2020) Simulating Crowds in Real Time with Agent-Based Modelling and a Particle Filter, 
Journal of Artificial Societies and Social Simulation 23 (3) 3 http://jasss.soc.surrey.ac.uk/23/3/3.html, https://doi.
org/10.18564/jasss.4266

38	 Vargas, F., Thodoroff, P., Lawrence, N.D. and Lamacraft, A. (2021) Solving Schrödinger Bridges via Maximum 
Likelihood, arXiv:2106.02081 [stat.ML], https://doi.org/10.48550/arXiv.2106.02081

The analogy of particle movement can also be 
applied as an abstraction of larger scale physical 
processes, such as in agent-based models for 
crowd simulation.37 In these systems the initial 
system state is represented in an initial probabil-
ity distribution, the scientific objective can then 
also be represented as a target distribution. 
The dynamics underpinning this diffusion are 
formalised mathematically in the Schrödinger 
bridge problem. This long-standing problem 
is concerned with finding the most likely paths 
along which particles move from their starting 
distribution to their distribution at a defined point 
in time, based on experimentally-observed start 
and end positions. In general, finding analytic 
solutions to the Schrödinger bridge problem 
is intractable, but machine learning tools are 
providing new approaches for finding approxi-
mate numerical solutions that can be deployed 
across domains.38

https://doi.org/10.48550/arXiv.2203.08056
https://www.nature.com/articles/s41598-022-14646-4
http://jasss.soc.surrey.ac.uk/23/3/3.html
https://doi.org/10.18564/jasss.4266
https://doi.org/10.18564/jasss.4266
https://doi.org/10.48550/arXiv.2106.02081
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In biological sciences

39	 This example is inspired by Maren Büttner’s talk, the abstract for which is provided later in this document.
40	 Krishnamurthy, K.V., Bahadur, B., John Adams, S., Venkatasubramanian, P. (2015). Development and Organization 

of Cell Types and Tissues. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and 
Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978–81–322–2286–6_3

41	 Haghverdi, L., Büttner, M., Wolf, F. et al. (2016) Diffusion pseudotime robustly reconstructs lineage branching. 
Nat Methods 13, pp. 845–848. https://doi.org/10.1038/nmeth.3971

42	 Böttcher A, Büttner M, Tritschler S, Sterr M, Aliluev A, Oppenländer L, Burtscher I, Sass S, Irmler M, Beckers J, 
Ziegenhain C, Enard W, Schamberger AC, Verhamme FM, Eickelberg O, Theis FJ, Lickert H. Non-canonical Wnt/PCP 
signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. Nat Cell Biol. 
2021 Jan; 23(1):23–31. doi: 10.1038/s41556–020–00617–2. Epub 2021 Jan 4. Erratum in: Nat Cell Biol. 2021 
May;23(5):566–576. PMID: 33398177. https://doi.org/10.1038/s41556–020–00617–2

43	 Luecken, M.D., Büttner, M., Chaichoompu, K. et al. Benchmarking atlas-level data integration in single-cell genomics. 
Nat Methods 19, 41–50 (2022). https://doi.org/10.1038/s41592–021–01336–8

44	 This example is inspired by Jakob Macke’s talk, the abstract for which is provided later in this document.

The development and differentiation of cells 
into tissues and organs39 is a complicated 
process, shaped by hormonal and genetic influ-
ences on cell growth.40 Advances in genomics 
have allowed researchers to characterise the 
genetic material of different organisms; more 
recent progress in single-cell genomics extends 
this ability to the single‑cell level, unlocking 
detailed analysis of how genetic activity deter-
mines cellular function.

Single-cell RNA studies examine how rib-
onucleic acids (RNA) shape cellular properties 
and development pathways. The RNA profiles 
created by genetic sequencing techniques allow 
researchers to identify which genes are active 
in a cell. The question for the field today is how 
to move from these single-cell analyses to an 
atlas of cell development that shows how cells 
specialise and form tissues or organs.

By combining statistical and machine 
learning techniques, researchers can recon-
struct the gene dynamics – which genes are 
activated at which time – that influence cell 
development.41 Cells in the small intestine, for 
example, undergo a pattern of differentiation that 
takes them from their base state to highly spe-
cialised units, able to variously secrete mucus, 
absorb nutrients, or respond to hormones. By 
studying what genes are expressed in a cell at an 
early stage, researchers can predict how the cell 
will specialise and identify which genetic changes 
are associated with that specialisation, opening 
opportunities to treat intestinal diseases.42

Building these models relies on effective 
data management. Lab processes can inject 
artefacts into datasets, for example batch 
effects arising from how cells were grown or 
harvested for study, which need to be removed 
from data before analysis. Effective data correc-
tion maintains biologically-relevant information, 
while removing noise from the data. A variety 
of tools exist for this correction, including 
regression models, dimensionality reduction, 
graph methods, and deep learning. For domain 
researchers to be able to identify the tools that 
are useful for them, benchmarking studies 
are vital in identifying the most effective data 
integration method for their purpose.43 However, 
there remain open questions about how best 
to benchmark the performance of a system 
when there are complex pipelines of analysis 
involved. Understanding the end-to-end nature 
of an analytical pipeline can be difficult, and 
new approaches to assessing performance 
may be needed.

To understand how the brain works,44 
neuroscientists develop mathematical models 
that describe the activity of individual neurons, 
and how these connect across brain networks. 
Models on the mechanistic level take the form 
of differential equations. These models are 
based on data from experiments that examine 
how neurons respond to different signals or 
perturbations. To build a computational model 
from this data, it is first necessary to find which 

https://link.springer.com/chapter/10.1007/978-81-322-2286-6_3
https://doi.org/10.1038/nmeth.3971
https://www.nature.com/articles/s41556-020-00617-2
https://www.nature.com/articles/s41592-021-01336-8
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factors influence how a neuron acts, creating 
a set of parameters that determine how the 
model works. This process of finding param-
eters is often labour-intensive, relying 
on trial-and-error, which limits researchers’ 
ability to scale models across complex 
neural networks. Machine learning can-

45	 Gonçalves, P., Lueckmann, J.M., Deistler, M., Nonnenmacher, M., Öcal, K., Bassetto, G., Chintaluri, C., 
Podlaski, W.F., Haddad, S.A., Vogels, T.P., Greenberg, D., and Macke, J.H. (2020) Training deep neural density 
estimators to identify mechanistic models of neural dynamics eLife 9:e56261 https://doi.org/10.7554/eLife.56261

help streamline that model definition process, 
by predicting which models are more likely 
to be compatible with data. Byautomatically 
identifying model parameters, researchers 
can rapidly develop simulations of complex 
structures, such as brains or nervous systems 
in different animals.45

https://doi.org/10.7554/eLife.56261
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Box 1: Talks given during this workshop session

Markus Reichstein: Machine-learning-
model-data‑integration for a better 
understanding of the Earth System 

The Earth is a complex dynamic networked 
system. Machine learning, i.e. derivation of 
computational models from data, has already 
made important contributions to predict and 
understand components of the Earth sys-
tem, specifically in climate, remote sensing 
and environmental sciences. For instance, 
classifications of land cover types, prediction 
of land-atmosphere and ocean-atmosphere 
exchange, or detection of extreme events have 
greatly benefited from these approaches. Such 
data‑driven information has already changed 
how Earth system models are evaluated and 
further developed. However, many studies have 
not yet sufficiently addressed and exploited 
dynamic aspects of systems, such as memory 
effects for prediction and effects of spatial context, 
e.g. for classification and change detection. In 
particular new developments in deep learning 
offer great potential to overcome these limita-
tions. Yet, a key challenge and opportunity is to 
integrate (physical-biological) system modelling 
approaches with machine learning into hybrid 
modelling approaches, which combines physi-
cal consistency and machine learning versatility. 
A couple of examples are given with focus on 
the terrestrial biosphere, where the combination 
of system-based and machine-learning-based 
modelling helps our understanding of aspects 
of the Earth system.

Dina Machuve: Poultry Diseases Models 
using Deep Learning

Coccidiosis, Salmonella, and Newcastle are 
the common poultry diseases that curtail poul-
try production if they are not detected early. 
In Tanzania, these diseases are not detected 
early due to limited access to agricultural 
support services by poultry farmers. Deep 
learning techniques have the potential for early 
diagnosis of these poultry diseases. In this 

study, a deep Convolutional Neural Network 
(CNN) model was developed to diagnose 
poultry diseases by classifying healthy and 
unhealthy fecal images. Unhealthy fecal images 
may be symptomatic of Coccidiosis, Salmo-
nella, and Newcastle diseases. We collected 
1,255 laboratory-labeled fecal images and fecal 
samples used in Polymerase Chain Reaction 
diagnostics to annotate the laboratory-labe-
led fecal images. We took 6,812 poultry fecal 
photos using an Open Data Kit. Agricultural 
support experts annotated the farm-labeled 
fecal images. Then we used a baseline CNN 
model, VGG16, InceptionV3, MobileNetV2, and 
Xception models. We trained models using farm 
and laboratory-labeled fecal images and then 
fine-tuned them. The test set used farm-labeled 
images. The test accuracies results without 
fine-tuning were 83.06% for the baseline CNN, 
85.85% for VGG16, 94.79% for InceptionV3, 
87.46% for MobileNetV2, and 88.27% for 
Xception. Finetuning while freezing the batch 
normalization layer improved model accuracies, 
resulting in 95.01% for VGG16, 95.45% for 
InceptionV3,98.02% and 98.24% for Xception, 
for MobileNetV2, with F1 scores for all classi-
fiers above 75% in all four classes. Given the 
lighter weight of the trained MobileNetV2 and 
its better ability to generalize, we recommend 
deploying this model for the early detection of 
poultry diseases at the farm level. There are 
open questions about the deployment of the 
model at the farm level and potential areas 
for further research.

Siddharth Mishra-Sharma: Simulation-based 
approaches to astrophysics dark 
matter searches

We are at the dawn of a data-rich era in astro-
physics and cosmology, with the capacity to 
extract useful scientific insights often limited by 
our ability to efficiently model complex processes 
that give rise to the data rather than the volume 
and nature of observations itself. I will describe 
recent progress in applying mechanistic forward 
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modeling techniques to a range of astrophys-
ical observations with the goal of searching 
for signatures of new physics, in particular the 
nature of dark matter. These leverage devel-
opments in machine learning-aided inference, 
e.g. using simulation-based inference as well 
as differentiable probabilistic programming, 
while encoding domain knowledge, in order to 
maximize the scientific output of current as well 
as future experiments.

Maren Büttner: Single‑cell transcriptomics

Cells are the fundamental units of life.
Understanding cellular processes is a basis 
for improving human health, disease diagno-
sis and monitoring. The advent of single-cell 
transcriptomics (scRNA-seq) allows charac-
terizing the gene expression patterns of entire 
organs and organisms at single cell resolu-
tion. The human genome encodes more than 
30.000 genes, and high-throughput scRNA-seq 
methods create samples with tens of thousands 
of cell measurements. The analysis of such 
data requires a variety of methods from the 
machine learning field, e.g. dimensionality 
reduction techniques from PCA to variational 
autoencoders, graph-based clustering, clas-
sification of cell types, trajectory inference 
and causal inference of gene regulation to 
understand cell fate decision making. To date, 
scRNA‑seq is a widely applied research tech-
nique, which has the potential for standard 
application in the clinics. My presentation 
focusses on current approaches for large‑scale 
scRNA-seq data, current open questions, and 
implications for human health. 

Christian Igel: Estimating ecosystem 
properties: Combining machine learning 
and mechanistic models

Progress in remote sensing technology and 
machine learning algorithms enables scaling 
up the monitoring of ecosystems. This leads 

to new knowledge about their status and dynam-
ics, which will be helpful in land degradation 
assessment (e.g., deforestation), in mitigating 
poverty (e.g., food security, agroforestry, wood 
products), and in managing climate change 
(e.g., carbon sequestration). We apply deep 
learning for the mapping of individual trees and 
forests. Tree crowns are segmented in satellite 
imagery using fully convolutional neural networks. 
This provides detailed measurements of the 
canopy area and of the distribution of trees 
within and outside forests. Allometric equations 
are applied to estimate the biomasses (and 
thereby the stored carbon) of the individual 
trees. We use iterative gradient-based opti-
mization of the allometric models and suggest 
techniques such as jackknife+ for quantifying 
the uncertainty of the model predictions. Tree 
biomass can also be directly inferred from 
LiDAR (laser imaging, detection, and ranging) 
measurements using 3D point cloud neural 
networks. This leads to highly accurate results 
without requiring a digital elevation model. In 
a new project, we consider risk assessment of 
vector-borne diseases based on deep learning 
and remote sensing. Malaria risk is related to 
the housing conditions, for example, the type 
of roofing material, which can be determined 
from satellite images.

Ieva Kazlauskaite: Partial differential 
equations and Variational Bayes

Inverse problems involving partial differential 
equations (PDEs) are widely used in science 
and engineering. Although such problems are 
generally ill-posed, different regularisation 
approaches have been developed to amelio-
rate this problem. Among them is the Bayesian 
formulation, where a prior probability measure 
is placed on the quantity of interest. The result-
ing posterior probability measure is usually 
analytically intractable. The Markov Chain 
Monte Carlo (MCMC) method has been the 
go-to method for sampling from those posterior 
measures. MCMC is computationally infeasible 
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for large-scale problems that arise in engineer-
ing practice. Lately, Variational Bayes (VB) 
has been recognised as a more computation-
ally tractable method for Bayesian inference, 
approximating a Bayesian posterior distribu-
tion with a simpler trial distribution by solving 
an optimisation problem. The talk covered 
some recent experiences of applying Bayesian 
inference, generative models and probabilistic 
programming languages in the context of learn-
ing material properties in civil engineering and 
in ice sheet and ice core modelling. The main 
shortcomings of PPLs and differentiable prob-
lems were highlighted.

Francisco Vargas: The Schrödinger 
bridge problem

Recent works in diffusion-based models have 
been achieving competitive results across 
generative modelling and inference, in this 
presentation we propose to explore a unifying 
framework based on Schrodinger bridges to 
explore/explain diffusion-based methodology. 

The Schrödinger bridge problem (SBP) 
finds the most likely stochastic evolution 
between two probability distributions given 
a prior (reference) stochastic evolution. 
Recently SBP based methodology has made 
its way into generative modelling, sam-
pling, and inference. In this talk we propose 
the exploration of a unifying framework for the 
aforementioned works based on the renowned 
IPF/Sinkhorn algorithm. The motivation behind 
this is to cast a unifying lens via the Schrodinger 
perspective relating inference, sampling and 
transport, in a way that we can leverage many 
of the useful techniques and heuristics from 
each field to benefit each other.
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Building effective simulations

Moving upstream

46	 Blei, D.M. (2014) Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, Annual Review of Statistics and Its 
Application, Vol. 1:203–232, https://doi.org/10.1146/annurev-statistics-022513-115657

47	 Cranmer, K., Brehmer, J., Louppe, G. (2019) The frontier of simulation-based inference, arXiv:1911.01429[stat.ML], https://doi.
org/10.1073/pnas.1912789117

Science proceeds through hypothesis, observation and 
analysis. For hundreds of years, researchers have 
advanced the frontiers of knowledge by collecting 
data, compressing those observations into a model, 
then computing that model to create representations 
of how the world works, generating new insights 
about natural and physical phenomena and theo-
ries about the systems from which those phenom-
ena emerge in the process.46 These mathematical 
models rely on numerical methods: algorithms that 
help solve mathematical problems where no analyt-
ical solution is available. Today, data collection and 
the basic computational tasks involved in its anal-
ysis – linear algebra, optimisation, simulation, and 

so on – remain consistent features of the scientific 
process. Progress in machine learning, however, 
has changed the modelling landscape. ‘AI for sci-
ence’ offers a data-centric approach to modelling 
and simulating the world. Operating alongside the 
traditional mathematical models that are central 
to many disciplines, machine learning provides 
data‑centric analytical methods that can be inte-
grated across the scientific pipeline, for example 
enabling sophisticated simulations of real world 
systems. These simulations can be used to inform 
model development, test hypotheses and shape 
areas of research focus, or unlock insights from 
complex data.

Nurturing a diversity of approaches
Simulations are a well-established tool for scientific 
discovery. Their fundamental task is to allow data 
sampling from a model where the differences between 
simulation and the real world are reduced as far as 
feasible, to enable experimentation or testing of the 
impact of different perturbations, while allowing some 
measure of simplification of the system. Effective 
simulators allow researchers to move from theory 
to an understanding of what data should look like.

Domains such as particle physics, protein 
folding, climate science, and others, have devel-
oped complex simulations that use known theories 
and parameters of interest to make predictions 
about the system of study. AI for science can be 
brought in to speed up some of these through sur-
rogate models. Machine learning can complement 
‘traditional’ approaches to scientific simulation, 
adding components that model the most uncer-
tain elements of a system to strongly mechanistic 

models that might otherwise be too restrictive in 
their assumptions.

Much early excitement surrounding AI for 
science was rooted in the reverse process, asking: 
instead of starting with theory, could researchers 
instead start with the large amounts of data availa-
ble in many areas of research and, from that data, 
build an understanding of what an underpinning 
theory might be? Given a set of observations, is it 
possible to find parameters for a model that result 
in simulations that reflect the measured data? 
Such simulation-based inference (SBI) offers the 
opportunity to generate novel insights across 
scientific disciplines.

To enable such analysis, machine learning 
methods are needed that can extract insights from 
high-dimensional, multi-modal data, in ways that are 
labour- and compute-efficient.47 The field of probabil-
istic numerics offers a way to flexibly combine infor-

https://doi.org/10.1146/annurev-statistics-022513-115657
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1073/pnas.1912789117
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mation from mechanistic models with insights from 
data, solving numerical problems through statistical 
approaches.48 Operationalising these methods to 
create effective data-driven simulations requires bal-
ancing different model characteristics. The model’s 
parameters must be specified to a sufficient level of 
granularity to describe the real-world system, while 

48	 Hennig, P., Osborne, M.A. and Kersting, H. (2022). Probabilistic Numerics – Computation as Machine Learning. 
Cambridge University Press.

49	 Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A. and Louppe, G. (2021), A Trust Crisis In Simulation-Based Inference? 
Your Posterior Approximations Can Be Unfaithful, arXiv:2110.06581 [stat.ML], https://doi.org/10.48550/arXiv.2110.06581

50	 Ibid.

operating at a level of abstraction that is amenable 
to analysis and computation; almost all models are 
‘wrong’ or falsifiable because of this, but some level 
of abstraction is necessary to make them useful for 
analysis. The simulation must also be designed to be 
robust, and able to generate inferences that align with 
real-world observations.

Truth, truthiness, and interfacing with the real world
The excitement underpinning AI for science stems 
from the aspiration to unearth new understand-
ings of the world, leveraging data to advance the 
frontiers of knowledge. While subject to their own 
limitations, the scientific community has developed 
checks and balances to scrutinise new knowledge 
and maintain the rigour of scientific inquiry. Recent 
years have seen a variety of challenges or bench-
marks emerge in the machine learning community 
that have come to represent the field’s expected 
standards of performance from algorithms on 
defined tasks. However, these standards do not 
necessarily align with the expectations of domain 
researchers.49 As data-centric simulations are 
integrated into scientific process, machine learn-
ing researchers must consider their responsibility 
in maintaining the integrity of the domains into 
which they are deployed, raising the question: what 
guardrails are needed to ensure researchers can be 
confident in the outputs from machine learning‑ena-
bled simulations? 

A variety of diagnostic tests can help. Core 
to many of these diagnostics is analysis of 
whether a model is computationally faithful. In short: 
the inferences generated by a simulation should 
reflect those from observations.50 One approach 
to checking this alignment is to consider the con-
sistency of distributions from inferred and observed 
datasets. If the model is a good fit, the data it gen-
erates should broadly match the data observed 
through experimentation.

Underpinning these diagnostics is a funda-
mental question about how to manage uncertainty, 
in a context where different failure modes have 

different implications. Put simply: when a model 
fails, is it worse to be over-confident in its results, 
or over-conservative? In the scientific context, 
over-confidence seems more likely to result in neg-
ative outcomes, whether through giving misleading 
interpretations or results or driving lines of inquiry in 
unproductive directions. Machine learning methods 
can be designed for conservatism, reducing the risk 
of false positives.

Implementing a schedule of model building, 
computing, critiquing, and repeating can refine this 
process. One lesson from experiences of building 
machine learning-enabled simulations is that there 
can be a disconnect between how machine learn-
ing approaches inference and model building, and 
how the same task is approached by domain sci-
entists. From a domain perspective, model building 
seems naturally an iterative process: collect data, 
fit a model, find errors or areas for improvement, 
update the model, and so on. This iterative process 
is guided by expert intuition and knowledge; deep 
understanding of the system under study and how it 
responds to perturbation. Machine learning research 
has developed practices for prior elicitation – using 
domain knowledge to shape the structure of proba-
bilistic models – but the nuances of this domain intui-
tion are often not easily captured a priori, instead 
emerging when models fail as an informal sense 
of what ‘feels’ like it should be true. This qualitative 
input is vital in building effective simulations. It requires 
close collaboration, which in turn requires an invest-
ment of time and energy from domain communities, 
generated through mutual trust, incentives, and 
long-term relationship-building.

https://doi.org/10.48550/arXiv.2110.06581
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51	 Alsing, J., Charnock, T., Feeney, S. and Wandelt, B. (2019) Fast likelihood-free cosmology with neural density 
estimators and active learning, arXiv:1903.00007 [astro-ph.CO] https://doi.org/10.48550/arXiv.1903.00007

52	 See above, and Lavin, A., Zenil, H., Paige, B., Krakauer, D., Gottschlich, J., Mattson, T., Anandkumer, A., Choudry, S., 
Rocki, K., Baydin, A.G., Prunkl, C., Paige, B., Isayev, O., Peterson, E., McMahon, P.L., Macke, J., Cranmer, 
K., Zhang, J., Wainwright, H., Hanuka, A., Veloso, M., Assefra, S., Zheng, S., and Pfeffer, A. (2021) Simulation 
Intelligence: Towards a New Generation of Scientific Methods, arXiv:2112.03235 [cs.AI], https://doi.org/10.48550/
arXiv.2112.03235

53	 See, for example, Cranmer, K., Heinrich, L., Head, T. and Louppe, G. Active sciencing, at: https://github.com/cranmer/
active_sciencing

54	 Boelts, J., Lueckmann, J.M., Gao, R., and Macke, J.H. (2022) Flexible and efficient simulation‑based inference for 
models of decision-making eLife 11:e77220 https://doi.org/10.7554/eLife.77220

55	 Kersting, H. (2021) Uncertainty-aware numerical solutions of ODE’s by Bayesian Filtering, available at: 
https://hanskersting.github.io/publication/phd-thesis

Machine learning typically requires an explicit 
representation of a likelihood, but these are 
often difficult to compute. Further advances 
in SBI are necessary to allow researchers 
to identify model parameters from data.

	● Techniques such as likelihood-free infer-
ence can enhance existing Bayesian 
methods for inferring posterior estimations.51

	● Building surrogate models,52 using Bayes-
ian approaches for simulation planning 

to optimise information gain,53 or deploy-
ing emulations54 can also enhance the 
efficiency of simulations.

	● Probabilistic numerics offers a route to devel-
opstatistically-optimal algorithms that  
are amenable to comprehensive 
uncertainty quantification, leveraging 
Gaussian Process-based Ordinary 
Differential Equation (ODE) solvers 
to pursue simulation as an 
inference problem.55

Connecting simulation to practice
Computational tools are central to the effective 
deployment of machine learning-enabled simulation. 
The function and form of such tools must align with 
the requirements of the community deploying them. 
Designing computational systems to match user 
needs – and work effectively in practice – requires 
both effective software engineering and close col-
laboration with domain groups that can articulate the 
requirements and expectations of those working in 
the field. To remain effective over the longer-term, 
such systems must leverage effective software 
engineering practices, including embedding version 
control and building interfaces that work with other 
models and systems. Those practices, and the 
software systems that emerge from them, must be 
designed for the needs of those using the system, 
drawing from existing best practices in software 
engineering, but adapting those practices to reflect 
the needs of the domain for deployment.

Constructing computational tools requires a mix of 
technical insight and craft skill – of knowledge and 
know how. Tools produced by the machine learning 
community differ in their usefulness on different 
problems: some work well for certain tasks, but 
not for others. Without access to such craft skills, 
those outside the ‘AI for science’ community can 
find it challenging to determine which tools to use 
for which purposes, reducing the generalisability 
of existing methods and approaches. This challenge 
becomes particularly visible when practitioners are 
tightly integrated into the analysis pipeline, such 
as in applications in developmental biology, in the 
developing world, and in data-centric engineering. 
Widening access to the field will require user guides 
that characterise which simulations are effective for 
which tasks or purposes, supported by case studies 
or user stories that help demystify how machine 
learning can work in practice. 

https://doi.org/10.48550/arXiv.1903.00007
http://cs.AI
https://doi.org/10.48550/arXiv.2112.03235
https://doi.org/10.48550/arXiv.2112.03235
https://github.com/cranmer/active_sciencing
https://github.com/cranmer/active_sciencing
https://doi.org/10.7554/eLife.77220
https://hanskersting.github.io/publication/phd-thesis
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Operationalising these approaches will also 
require new toolkits to support implementation 
of probabilistic numerical methods.56 Compu-
tational faithfulness – alignment of inferred 
parameters with scientific knowledge – can 
be achieved through:

	● Diagnostic checks in the self-consistency 
of the Bayesian joint distribution, which 
measure the scientific quality of the 
regions computed by Bayesian SBI meth-
ods.57 Checking for self-consistency gives 
a sense whether the model is ‘good enough’ 
(i.e whether the inference engine gives 
a good sense of the posterior).

	● Enforcing conservative neural ratio 
estimation through binary classifier spec-
ification, producing more conservative 
posterior approximations.58

	● Hybrid modelling, which combines machine 
learning components learned from data with 
the mechanistic components specified by 
existing domain knowledge.59

	● Further study of the impact of model mis-
specification could also help generate new 
robustness diagnostic checks.60

56	 See, for example, the previous Dagstuhl meeting on this topic: https://www.probabilistic-numerics.org/
meetings/2021_Dagstuhl/ Dagstuhl and Schmidt, J., Kramer, N. and Hennig, P. (2021) A Probabilistic State Space 
Model for Joint Inference from Differential Equations and Data, arXiv:2103.10153 [stat.ML], https://doi.org/10.48550/
arXiv.2103.10153

57	 Hermans, J., Delaunoy, A., Rozet, F., Wehenkel, A. and Louppe, G. (2021), A Trust Crisis In Simulation-Based 
Inference? Your Posterior Approximations Can Be Unfaithful, arXiv:2110.06581 [stat.ML], https://doi.org/10.48550/
arXiv.2110.06581 and Mishra-Sharma, S. (2021) Inferring dark matter substructure with astrometric lensing beyond 
the power spectrum, arXiv:2110.01620 [astro-ph.CO], https://doi.org/10.48550/arXiv.2110.01620

58	 Delaunoy, A., Hermans, J., Rozet, F., Wehenkel, A. and Louppe, G. (2022) Towards Reliable Simulation-
Based Inference with Balanced Neural Ratio Estimation, arXiv:2208.13624 [stat.ML], https://doi.org/10.48550/
arXiv.2208.13624

59	 Wehenkel, A., Behrmann, J., Hsu, H., Sapiro, G., Louppe, G., and Jacobsen, J.H. (2022) Robust Hybrid Learning 
With Expert Augmentation, arXiv:2202.03881 [cs.LG], https://doi.org/10.48550/arXiv.2202.03881

60	 Cannon, P., Ward, D. and Schmon, S.M. (2022) Investigating the Impact of Model Misspecification in Neural 
Simulation-based Inference, arXiv:2209.01845 [stat.ML], https://doi.org/10.48550/arXiv.2209.01845

61	 For example: European Commission (2022) Destination Earth – new digital twin of the Earth will help tackle climate 
change and protect nature, available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1977

‘Digital twins’ have recently received much 
attention as a tool to exploit sophisticated 
simulations. In Earth sciences, for example, 
ambitious efforts to develop a digital twin of 
the Earth propose to allow more accurate fore-
casting, visualisation, or scenario testing of the 
impact of climate change and efforts to mitigate 
it.61 The challenge is to integrate different mod-
els or components of a system – for example, 
connecting atmospheric models, with land mod-
els, with models of human behaviour – in a way 
that represents the complete Earth system. That 
requires consideration of the different levels of 
granularity with which these different models 
operate: economic models of human behaviour, 
for example, operate with different assumptions 
and levels of enquiry in comparison to physical 
models of ocean circulation. The full range of 
granularities becomes apparent when consid-
ering that specific applications, such as disease 
monitoring on poultry farms, sit within the wider 
ecosystem of the natural and built environment. 
A digital twin needs to make choices about 
what levels of granularity it is operating at, from 
the scale of the poultry farm to the planet. The 
questions that emerge from such ambitions is: 
what level of granularity is helpful or necessary 
to deliver effective results? And what interfaces 
between diverse models might be possible?

https://www.probabilistic-numerics.org/meetings/2021_Dagstuhl/
https://www.probabilistic-numerics.org/meetings/2021_Dagstuhl/
http://www.probabilistic-numerics.org/meetings/2021_Dagstuhl
https://doi.org/10.48550/arXiv.2103.10153
https://doi.org/10.48550/arXiv.2103.10153
https://doi.org/10.48550/arXiv.2110.06581
https://doi.org/10.48550/arXiv.2110.06581
https://doi.org/10.48550/arXiv.2110.01620
https://doi.org/10.48550/arXiv.2208.13624
https://doi.org/10.48550/arXiv.2208.13624
http://cs.LG
https://doi.org/10.48550/arXiv.2202.03881
https://doi.org/10.48550/arXiv.2209.01845
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1977


21Building effective simulations

Box 2: Talks given during this workshop session

Philipp Hennig: Information from data 
and compute in scientific inference

Simulations are central to scientific inference. 
Simulators are typically treated as black boxes, 
with the inference loop wrapped around them. 
This approach is convenient for the program-
ming scientists, but can be highly inefficient. 
Probabilistic numerical methods represent 
computational and empirical data in the same 
language, which allows for inference from 
mechanistic knowledge and empirical data 
in one combined step. I will argue that scien-
tific computing needs to embrace such new 
computational paradigms to truly leverage 
ML in science, which also requires rethinking 
scientific codebases.

Hans Kersting: ODE filters and 
smoothers: probabilistic numerics 
for mechanistic modelling

Probabilistic numerics (PN) unifies statistical 
and numerical approximations by formulating 
them in the same language of statistical (Bayes-
ian) inference. For ODEs, a well-established 
probabilistic numerical method is ODE filters 
and smoothers which can help to deal more 
aptly with uncertainty in mechanistic modeling. 
In the first half of this talk, we will first introduce 
PN and then present ODE filters/smoothers as 
a specific instance of PN. In the second half, 
we will discuss how ODE filters/smoothers 
can improve mechanistic modeling in the nat-
ural sciences and present a recent application 
of inferring the parameters of a real-world 
dynamical system.

Jakob Macke: Four short stories 
on simulation-based inference

Many fields of science make extensive use 
of simulations expressing mechanistic forward 
models, requiring the use of simulation-based 
inference methods. I will share experiences and 
lessons learned from four applications: describ-
ing the dynamics and energy consumptions of 
neural networks in the stomatogastric ganglion; 
inferring parameters of gravitational wave 
models; optimising single-molecule localisation 
microscopy, and building computational models 
of the fly visual system. I will try to convey some 
thoughts on the challenges and shortcomings 
of current approaches.

Gilles Louppe: Towards reliable simulation-
based inference and beyond

Modern approaches for simulation-based 
inference build upon deep learning surrogates 
to enable approximate Bayesian inference 
with computer simulators. In practice, the 
estimated posteriors’ computational faith-
fulness is, however, rarely guaranteed. For 
example, Hermans et al., 2021 have shown 
that current simulation-based inference 
algorithms can produce posteriors that are 
overconfident, hence risking false inferences. 
In this talk, we will review the main infer-
ence algorithms and present Balanced 
Neural Ratio Estimation (BNRE), a variation 
of the NRE algorithm designed to produce 
posterior approximations that tend to be more 
conservative, hence improving their reliability.

http://simulators.In
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Tom Dietterich: Modeling the data 
collection process: My journey

In this talk, I will describe three examples 
of my attempts to integrate subject-matter 
knowledge with machine learning. The first 
example involves predicting grasshopper 
infestations. I will sketch the method-
ology in which we first modeled the life 

cycle of the grasshoppers to capture the 
factors that affect their population. Unfor-
tunately, most variables of interest were 
not measured, so we used the model to 
guide the construction of proxy variables. 
Ultimately, this project did not succeed, 
but it is hard to determine whether this is 
due to modeling problems or to the chaotic 
nature of the biological phenomenon.
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Connecting data to causality

Causality in science and data

62	 Schölkopf, B., Locatello, F., Bauer, S., Ke, N.R., Kalchbrenner, N., Goyal, A., and Bengio, Y. (2021) Towards Causal Representation 
Learning, arXiv:2102.11107 [cs.LG], https://doi.org/10.48550/arXiv.2102.11107

63	 Rueckel, J., Trappmann, L., Schachtner, B., Wesp, P., Hoppe, B.F., Fink, N., Ricke, J., Dinkel, J., Ingrisch, M., and Sabel, B.O. 
(2020) Impact of Confounding Thoracic Tubes and Pleural Dehiscence Extent on Artificial Intelligence Pneumothorax Detection in 
Chest Radiographs. Invest Radiol. 2020 Dec;55(12):792–798. https://doi.org/10.1097/RLI.0000000000000707 . PMID: 32694453. 
https://pubmed.ncbi.nlm.nih.gov/32694453

64	 Emspak, J. (2016) How a machine learns prejudice, Scientific American Blogs, available at: www.scientificamerican.com/article/
how-a-machine-learns-prejudice/

Most scientific endeavours have a causal ele-
ment: researchers want to characterise how 
a system works, why it works that way, and what 
happens when it is perturbed. How researchers 
identify cause-and-effect relationships varies 
across domains. For some disciplines, the pro-
cess of hypothesis design – data collection – 
model development provides the core structure for 
interrogating how a system works. In others, where 
experimentation is more difficult, researchers may 
rely on natural experiments and observations to 
compare the response of a system under differ-
ent conditions. Those studying the Earth system, 
for example, have little scope to replicate planetary 
conditions, so instead rely on observational data and 
modelling to identify the impact of different interven-
tions. These different approaches, however, share 
a modelling approach in which researchers provide 
variables to create structural, causal models.

In contrast, machine learning proceeds by 
learning representations or rules from data, based 
on statistical information, rather than structured 
rules about how a system works (such as physi-
cal laws). Causal inference – the ability to identify 
cause-and-effect relationships in data – has been 
a core aim of AI research, in service of both wider 
ambitions to replicate intelligence in machines 
and efforts to create AI systems that are robust in 
deployment. However, in many respects efforts to 
integrate causal inference into AI systems have yet 
to deliver.62

An apocryphal story in AI tells of efforts by US 
researchers during the 1980s to train a computer 
system that could distinguish between images of 

tanks from the US and USSR. The resulting system 
delivered high accuracy on its training data, but 
failed repeatedly in practice. The system was sub-
sequently found to be classifying images based on 
their resolution and background features – is the 
image grainy? Does it contain snow? – rather than 
the tanks themselves. It found patterns in the data 
that were co-incident, rather than causal. That same 
error has real-world implications for the AI systems 
deployed today. In medical sciences, AI systems 
trained to detect collapsed lungs from medical 
images have been proven inaccurate, after the 
model was found to have learned to detect the tube 
inserted into the lung to enable a patient to breath 
as a response to its collapse, rather than the physi-
cal features of the lung itself.63 In medical sciences, 
deployment of such systems could put patient 
care at risk. In social sciences, these AI design 
and data bias failures can combine to marginalise 
vulnerable populations.64

Conversely, an understanding of the structures 
within data can improve the accuracy of machine 
learning analyses. In exoplanet discovery, for example, 
machine learning is used as a tool to detect varia-
tions in light signals from large-scale astronomical 
datasets. The movement of exoplanets around stars 
results in periodic changes to the light signals from 
those stars, as the planet obscures them in its transit. 
Machine learning can detect those signals and 
predict where exoplanets might be located, but the 
data is often noisy. Noticing that the structure of 
this noise was consistent across a number of stars, 
which were too distant from each other to be inter-
acting, researchers concluded that instrumentation 

http://cs.LG
https://doi.org/10.48550/arXiv.2102.11107
https://doi.org/10.1097/RLI.0000000000000707 
https://pubmed.ncbi.nlm.nih.gov/32694453
http://www.scientificamerican.com/article/how-a-machine-learns-prejudice/
http://www.scientificamerican.com/article/how-a-machine-learns-prejudice/
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effects were distorting the data, and developed 
a method to model those effects and remove 
them from exoplanet predictions. The result was 

65	 Schölkopf, B. (2019) Causality for Machine Learning, arXiv:1911.10500 [cs.LG], https://doi.org/10.1145/3501714.3501755
66	 Peters, J., Janzing, D. and Schölkopf, B. (2017) Elements of causal inference: foundations and learning algorithms, MIT Press, 

Cambridge, MA, ISBN 9780262037310.
67	 For reference, see the table on page 11 of reference 69.
68	 Such tools may have particular relevance in policy. For example: Mastakouri, A.A. and Schölkopf, B. (2020) Causal analysis of 

Covid-19 spread in Germany, arXiv:2007.11896 [stat.AP], https://doi.org/10.48550/arXiv.2007.11896.

an efficient method for exoplanet identification that 
subsequently contributed to the discovery of the first 
potentially habitable planet.65

Causal models as a route to advancing the science 
of AI and AI for science
Many of these errors in misdiagnosing cause-effect 
relationships arise from a core assumption in many 
machine learning methods: that data follows an inde-
pendent and identical distribution (IID). In practice, 
almost all data from real-world, or complex, systems 
will violate this assumption, given the interconnect-
edness of different variables. The task of causality 
in machine learning is to create models that can 
manage this violation, distinguishing between 
patterns in data that simply co‑occur and patterns 
that are causal. The resulting AI systems would be 
able to solve a task in many different environments, 
based on an understanding of the fundamental 
causal mechanisms in a system.66 They would be 
more robust in deployment, being less likely to make 
incorrect predictions as the environment in which 
they operate changes, and could be more efficient 
to train and deploy. They would also represent 
a step towards replicating human- or animal-like 
intelligence, being able to solve a task in many 
different environments.

In these regards, causal machine learning 
offers a route to balancing the widespread utility 
of statistical modelling with the strengths of phys-
ical models. Causality allows models to operate 
at a level of abstraction beyond strongly mech-
anistic approaches, such as those based on dif-
ferential equations, moving along a continuum 
from mechanistic to data-driven modelling. They 
provide researchers with the ability to make accu-
rate predictions under conditions of dataset shift 
(enable out of distribution generalisation); can 
provide insights into the physical processes that 

drive the behaviour of a system; unlock progress 
towards AI systems that ‘think’ in the sense of acting 
in an imagined space; while also leveraging insights 
that can be learned from data, but not otherwise 
detected.67 They also offer opportunities to explore 
counterfactuals in complex systems, asking what 
the impact of different interventions could have been, 
opening a door to the development of simulation-based 
decision-making tools.68

Achieving this potential requires technical devel-
opments in a number of directions, but can also yield 
more effective AI systems. Such systems would:

	● Be able to operate on out of distribution data, 
performing the task for which they are trained 
in environments with varying conditions.

	● Be able to learn how to perform a task based 
on relatively few examples of that task in differ-
ent conditions, or be able to rapidly adapt what 
they have learned for application in new envi-
ronments through transfer, one-shot, or lifelong 
learning approaches.

	● Support users to analyse the impact of different 
interventions on a system, providing explana-
tions or ways of attributing credit to different 
actions.

	● Respond to different ways of transmitting infor-
mation between individuals and groups, enabling 
effective communication with their users or other 
forms of cultural learning.

http://cs.LG
https://dl.acm.org/doi/10.1145/3501714.3501755
https://doi.org/10.48550/arXiv.2007.11896
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From methods to application
Achieving the level of technical sophistication 
required for causal modelling requires careful model 
design, based on close collaboration between 
machine learning and domain scientist. The pro-
cess of specifying what to represent in a causal 
machine learning system involves a series of 
‘micro-decisions’ about how to construct the model, 
negotiated by integrating machine learning and 
domain expertise. In this regard, causal machine 
learning can be a positive catalyst for deeper 
interdisciplinary collaboration; model construction 
can be a convening point for sharing understand-
ings between domains. However, the level of 
detail required can also be in tension with efforts 
to promote widespread adoption of AI methods 
across research. The availability of easy-to-use, 
off-the‑shelf AI tools has been an enabler for adop-
tion in many domains. The hand-crafted approach 
inherent to current causal methods renders them 
less accessible to non-expert users. Part of the 
challenge for the field is to make such methods 
more broadly accessible through open-source 
toolkits or effective software engineering practices.

This tension between specification and learn-
ing also highlights the importance of nurturing 
a diversity of methods across the spectrum from 
data-driven to mechanistic modelling. The domain 

(or, how much prior knowledge is available and what 
knowledge should be included), research question 
of interest, and other practical factors (including, 
for example, compute budget), will shape where 
along this spectrum researchers wish to target 
their modelling efforts.

While pursuing practical applications, advances 
in causal inference could help answer broader ques-
tions about the nature of intelligence and the role 
of causal representations in human understanding 
of how the worlds work. Much of human understand-
ing of the world arises from observing cause and effect; 
seeing what reaction follows an intervention – that an 
object falls when dropped, for example – in a way 
that generalises across circumstances and does not 
require detailed understanding of mathematical or 
physical laws. Integrating this ability into machine 
learning would help create systems that could be 
deployed on a variety of tasks. The process of building 
causal machine learning forces researchers to inter-
rogate the nature of causal representations – What 
are they? How are they constructed from the inter-
action between intelligent agents and the world? 
By what mechanism can such agents connect 
low-level observations to high-level causal varia-
bles? – which may in turn support wider advances 
in the science of AI.

Directions

69	 Schölkopf, B. (2019) Causality for Machine Learning, arXiv:1911.10500 [cs.LG], https://doi.org/10.1145/3501714.3501755

Causality in machine learning is a long-standing 
and complex challenge. In the context of scientific 
discovery, learning strategy, model design, and 
encoding domain knowledge all play a role in 
helping identify cause-effect relationships.

Different learning strategies can improve 
the ‘generalisability’ of machine learning, 
increasing its performance on previously 
unseen tasks, based on learning underlying 
structure of a task or environment in ways 
that can contribute to broader understandings 
of causality. Such learning strategies include:

	● Transfer learning, taking learning from one 
task or domain and applying it in another.

	● Multi-task learning, enabling a system to 
solve multiple tasks in multiple environments.

	● Adversarial learning, to reduce the vulnera-
bility of models to performance degradation 
on out-of-distribution data.

	● Causal representation learning, defining 
variables that are related by causal models.69

http://cs.LG
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	● Reinforcement learning strategies that 
reward agents for identifying policies based 
on invariances over different conditions.

Across these new learning approaches, 
attempts to establish causal mechanisms are 
also prompting progress in machine learning 
theory, through statistical formulations of 
core principles.70

Combining different methods can also 
enhance the functionality of an AI system. 
For example:

	● Neural ODEs have been shown to identify 
causal structures in time series data.71

	● Describing causal effects as objective 
functions in constrained optimisation 

70	 Guo, S., Tóth, V., Schölkopf, B. and Huszár, F. (2022) Causal de Finetti: On the Identification of Invariant Causal 
Structure in Exchangeable Data, arXiv:2203.15756 [stat.ML], https://doi.org/10.48550/arXiv.2203.15756

71	 Aliee, H., Theis, F. J. and Kilbertus, N. (2021) Beyond Predictions in Neural ODEs: Identification and Interventions, 
arXiv:2106.12430 [cs.LG], https://doi.org/10.48550/arXiv.2106.12430

72	 Padh, K., Zeitler, J., Watson, D., Kusner, M., Silva, R., and Kilbertus, N. (2022) Stochastic Causal Programming 
for Bounding Treatment Effects, arXiv:2202.10806 [stat.ML], https://doi.org/10.48550/arXiv.2202.10806

73	 Jakobsen, M. E., and Peters, J. (2020) Distributional robustness of K-class estimators and the PULSE, 
arXiv:2005.03353 [econ.EM], https://doi.org/10.48550/arXiv.2005.03353

74	 Including syntactic, semantic, and pragmatic elements: Stadler, M. & Kruse, P. (1990) Über Wirklichkeitskrite – rien. 
In: Riegas, V. & Vetter, C. (eds.) Zur Biologie der Kognition. Frankfurt a. M.: Suhrkamp

problems can deliver a form of stochastic 
causal programming.72

	● Technical interventions73 can con-
strain or optimise a model towards 
causal outcomes. As with simulation 
design, diagnostic checks can also help 
identify cause-effect relationships by 
examining model outputs against ‘real-
ity criteria’,74 which compare outputs 
to real-world results.

There are also a variety of approaches 
to representing existing scientific knowl-
edge in machine learning models, notably 
by specifying the assumptions made about 
the world through symmetries, invariances, 
and physical laws (see Figure 1).

https://doi.org/10.48550/arXiv.2203.15756
http://cs.LG
https://doi.org/10.48550/arXiv.2106.12430
https://doi.org/10.48550/arXiv.2202.10806
http://econ.EM
https://doi.org/10.48550/arXiv.2005.03353


27Connecting data to causality

Box 3: Talks given during this workshop session

Bernhard Schölkopf: Causality, causal 
digital twins, and their applications

1.	 Desiderata for causal machine learning: 
work with (and benefit from) non-IID data, 
multi-task/multi-environment, sample-efficient, 
OOD, generalisation from observation 
of marginals, interventional.

2.	 Modelling taxonomy: differential equations, 
causal models, statistical models.

3.	 How to get from one level to the next.

4.	 How to transfer between statistical 
models that share the same underlying 
causal model.

5.	 The assumption of independent causal 
mechanisms (ICM) (for example, invar-
iance/autonomy) and sparse mecha-
nism design.

6.	 How to derive the arrow of time from ICM 
and algorithmic information theory.

7.	 Statistical formulation of ICM: causal 
de Finetti.

8.	 Application to exoplanet discovery and 
Covid-19 vaccine scenarios.

9.	 Causal representations as (a) causal digital 
twins and (b) AI models.

Jonas Peters: Invariance: From Causality 
to Distribution Generalization

Assume that we observe data from a response 
Y and a set of covariates X under different 
experimental conditions (or environments). 
Rather than focusing on the model that is most 
predictive, it has been suggested to take into 
account the invariance of a model. This can 
help us to infer causal structure (Which covar-

iates are causes of Y?) and find models that 
generalize better (How well does the model 
perform on an unseen environment?). We show 
a few applications of these general principles 
and discuss first steps towards understand-
ing the corresponding theoretical guarantees 
and limits.

Niki Kilbertus: Can we discover dynamical 
laws from observation?

I will start with a brief introduction to identifiabil-
ity of ODE systems from a unique continuous or 
discrete observed solution trajectory. Then, I will 
provide an overview of modern approaches to 
inferring dynamical laws (in the form of ODEs) 
from observational data with a particular focus 
on interpretability and symbolic methods. 
Finally, I will describe our recent attempts and 
results at inferring scalar ODEs in symbolic 
form from a single irregularly sampled, noisy 
solution trajectory.

Soledad Villar: Invariances and 
equivariances in machine learning

In this talk, we give an overview of the progress 
in the last few years by several research groups 
in designing machine learning methods that 
repeat physical laws. Some of these frame-
works make use of irreducible representations, 
some make use of high-order tensor objects, 
and some apply symmetry enforcing con-
straints. Our work shows that it is simple to 
parameterise universally approximating func-
tions that are equivariant under actions of the 
Euclidean, Lorentz, and Poincare group at any 
dimensionality. The key observation is that 
O(d)‑equivariant (and related group-equivariant) 
functions can be universally expressed in terms 
of a lightweight collection of dimensionless sca-
lars (scalar products and scalar contractions 
of the scalar, vector, and tensor inputs). We 
complement our theory with numerical exam-
ples that show that the scalar-based method 
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is simple and efficient, and mention ongoing 
work on cosmology simulations.

Bubacarr Bah: Divide-and-Conquer 
Equation Learning with R2 and Bayesian 
Model Evidence

Deep learning is a powerful method for tasks 
like predictions and classification, but lacks 
interpretability and analytic access. Instead of 
fitting up to millions of parameters, an intrigu-
ing alternative for a wide range of problems 
would be to learn the governing equations 
from data. Resulting models would be concise, 
parameters can be interpreted, the model can 
adjust to shifts in data, and analytic analysis 
allows for extra insights. Common challenges 
are model complexity identification, stable 

feature selection, expressivity, computational 
feasibility, and scarce data. In our work, 
the mentioned challenges are addressed by 
combining existing methods in a novel way. 
We choose multiple regression as a framework 
and argue how a surprisingly large space of 
model equations can be captured. For fea-
ture selection, we exploit the computationally 
cheap coefficient of determination (R2) to 
loop through millions of models, and by using 
a divide-and‑conquer strategy, we are able 
to rule out remaining models in the equation 
class. Final model selection is achieved by 
exact values of the Bayesian model evidence 
with empirical priors, which is known to 
identify suitable model complexity without 
relying on mass data. Random polynomials, 
and a couple of chaotic systems are used 
as examples. 
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Encoding domain knowledge 

Where’s my [science] jetpack?

75	 The Royal Society (2018) AI narratives: portrayals and perceptions of artificial intelligence and why they matter, available at: 
https://royalsociety.org/topics-policy/projects/ai-narratives

76	 The title of this section is inspired by: www.fantasticfiction.com/w/daniel-h-wilson/where-s-my-jetpack.htm
77	 Paleyes, A., Urma, R.G. and Lawrence, N.D. (2022) Challenges in Deploying Machine Learning: A Survey of Case Studies, 

ACM Computing Surveys, https://doi.org/10.1145/3533378
78	 Villar, S., Hogg, D.W., Storey-Fisher, K., Yao, W. and Blum-Smith, B. (2021) Scalars are universal: Equivariant machine learning, 

structured like classical physics, arXiv:2106.06610 [cs.LG], https://doi.org/10.48550/arXiv.2106.06610 and Villar, S., Yao, W., 
Hogg, D.W., Blum-Smith, B. and Dumitrascu, B. (2022) Dimensionless machine learning: Imposing exact units equivariance, 
arXiv:2204.00887 [stat.ML], https://doi.org/10.48550/arXiv.2204.00887

79	 Ling, J., Jones, R. E., and Templeton, J.A. (2016) Machine learning strategies for systems with invariance properties. 
United States. https://doi.org/10.1016/j.jcp.2016.05.003

Humans have a long history of imagining futures 
where human progress is accelerated by intelli-
gent machines. Embedded in these visions for 
the future are aspirations that AI can be a faithful 
servant, easing daily activities or enhancing human 
activities.75 As with many emerging technologies, 
the reality of AI today looks different to these 
Sci-Fi futures.76 Practical experiences of deploying 
AI highlights a range of potential failure modes, 
often rooted in insufficient contextual awareness, 
misspecification of user needs, or misunderstanding 
of environmental dynamics.77

Today’s science builds on thousands of years 
of attempts to understand the world, which can be 

leveraged to design AI that serves scientific goals. 
The result should be a collaborative endeavour 
between humans and machines. Researchers 
need the analytical power of AI to make sense 
of the world, while AI needs input from human 
understandings of the domain in which it is 
deployed to function effectively; both need 
well-designed human-machine interfaces to make 
this collaboration work. In this context, effective 
integration of domain knowledge into AI systems 
is vital, and three (broad) strategies have 
emerged to facilitate this encoding: algorithmic 
design; AI integration in the lab; and effective 
communication and collaboration.

Encoding domain knowledge through model design
Traditional modelling approaches make use of 
well-defined rules or equations that explain the 
dynamics of the system under study. The laws 
of physics, for example, describe how energy moves 
through a system, based on conservation principles. 
These laws are complemented by mathematical 
symmetries that arise from our abstract representa-
tions of physical objects and describe what features 
of an object remain consistent, despite changes 
or transformations in a system.78 There may also be 
known invariances in a system: factors that do not 
change under any perturbations or that change in 

a defined way.79 Building on this existing knowledge, 
and connecting to efforts to generate causal under-
standings of the world through machine learning, 
an area of growing interest has been the design 
of machine learning models that respect these 
rules or symmetries.The principle underpinning this 
design strategy is that it is possible to move across 
a continuum from statistical (data‑driven) models 
to strongly mechanistic models, creating hybrid sys-
tems whose outputs should be constrained by what 
is physically feasible, while also leveraging insights 
from data (Figure 1).

https://royalsociety.org/topics-policy/projects/ai-narratives
http://www.fantasticfiction.com/w/daniel-h-wilson/where-s-my-jetpack.htm
https://doi.org/10.1145/3533378
http://cs.LG
https://doi.org/10.48550/arXiv.2106.06610
https://doi.org/10.48550/arXiv.2204.00887
https://doi.org/10.1016/j.jcp.2016.05.003
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Figure 1: A spectrum of modelling approaches

Figure 1: Models along a spectrum from classical i.i.d models to strongly mechanistic differential equation models introduce aspects 
of causality and symmetries to create a continuum between mechanistic and data‑driven worlds. Statistical or data-driven models are 
weakly mechanistic (i.e. they include smoothness assumptions or similar).

At one end of that continuum, mechanistic 
models would obey known laws or principles in 
a strongly deterministic way; at the other, statistical 
models encode fewer assumptions and rely more 
on data. The addition of invariances and symme-
tries, alongside other forms of domain knowledge, 
allows bridging between these two model classes 
(Figure 2). Models that describe how much heat 
is absorbed by the oceans under conditions of 
climate change, for example, should obey the laws 
of thermodynamics and energy conservation. By 
encoding the domain knowledge that has yielded 

these fundamental laws, such as the conservation 
of momentum or energy, researchers can ensure 
the outputs of a machine learning model will have 
a physically allowable expression. This encoding 
can come from integrating equations, symmetries, 
or invariances into model design. These encod-
ings constrain the operation of a machine learning 
system to align with the known dynamics of 
physical systems. The resulting models might 
be expected to produce more accurate results, 
with smaller generalisation errors, and with 
better out-of-distribution generalisation.

Data-driven 
models

Strongly 
mechanistic 

models

Law or 
Principles

Symmetries

Causal 
relationships

Qualitative 
knowledge
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Figure 2: Approaches to integrating domain insights 

Figure 2: Strategies for integrating domain insights: including information in data and including information as prior knowledge. 

Scientific centaurs

80	 Klami, A., Damoulas, T., Engkvist, O., Rinke, P., Kaski, S. (2022): Virtual Laboratories: Transforming research with AI. TechRxiv. 
Preprint. https://doi.org/10.36227/techrxiv.20412540.v1

Complementing modelling strategies to encode 
scientific knowledge are deployment strategies to 
use AI in the lab. The lab has long provided a physi-
cal hub for collaboration and knowledge‑generation, 
its function and form having remained broadly con-
sistent across centuries of scientific progress. Today, 
the digitisation of experimental equipment and labo-
ratory processes offers opportunities to integrate AI 
in experimental design and create new virtual labs.

By combining data from measurement devices, 
simulations of laboratory processes, and computational 
models of research or user objectives, these virtual 
labs provide a digital sibling of in-person research 

activities that can be used to optimise such activ-
ities. In drug discovery, for example, virtual labs 
could accelerate the testing and analysis processes 
that identify candidate drugs from potential drug 
targets. Instead of relying on physical testing of such 
starting molecules, multiple rounds of virtual testing 
can rapidly simulate the processes of drug design, 
manufacture, testing, and analysis to assess which 
starting molecules are more (or less) likely to be 
viable candidate drugs.80 As a result, AI can help 
accelerate the research process.

Advances in machine learning methods to 
enable effective simulations, causal modelling, 

Adding 
invariances to 

data-driven models

Simulation 
based inference

Include information 
in the models as 
prior knowledge

Emulation and 
surrogate modelling

Augmenting data 
with invariances

Integrating 
domain insights

Include information 
in data for the model

https://doi.org/10.36227/techrxiv.20412540.v1
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and encoding pre-existing domain insights – while 
packaging such methods into usable toolkits – are 
all necessary foundations for such digital siblings. 
Moving from virtual laboratory to ‘AI assistants’ 
requires further advances in AI system design to 
create AI agents that can elicit guidance or input 
from their domain experts. Such agents would not 
only provide useful intuitions for scientific modelling, 
but would serve as ‘scientific sidekicks’, actively 
helping researchers to drive their research. This 
new type of AI assistant would combine the ability 
to model the research problem of interest with 
the ability to model the goals and preferences of 
their expert users, even when the user themselves 

81	 Celikok, M.M., Oliehoek, F.A., Kaski, S. (2022) Best-Response Bayesian Reinforcement Learning with Bayes-Adaptive POMDPs 
for Centaurs, arXiv:2204.01160 [cs.AI], https://doi.org/10.48550/arXiv.2204.01160

82	 NASA, What is a gravitational wave? Available at: https://spaceplace.nasa.gov/gravitational-waves/en
83	 See, for example, the LIGO project. Information available at: www.ligo.caltech.edu

might not be able to clearly articulate those goals. 
As a starting point, these systems would need to 
support forms of user interaction that can extract 
user knowledge, leveraging this to identify appropri-
ate courses of action. To operate in contexts where 
user goals might be uncertain and user behaviour 
might change in response to the outputs of the AI 
system, these AI sidekicks will need insights from 
cognitive science, studies of team decision-making, 
and new learning strategies based on limited exam-
ples. The sophisticated user modelling so-created 
would unlock new forms of human-AI collaboration; 
scientific centaurs that combine both human and 
machine intelligence.81

Enabling communication across domains
Underpinning these efforts to integrate pre-existing 
knowledge into the design and deployment of AI 
systems is a feedback loop between domain and 
machine learning research, in which each elicits 
from and feeds into the other. This loop requires the 
ability to exchange knowledge and insights across 
disciplines through interdisciplinary collaboration 
and communication.

Matching model to user need requires shared 
understandings of the research question at hand, 
the constraints – whether from data, compute, 
funding, or time and energy available – that affect 
different collaborators, and the user needs of the 
domain environment. While AI researchers might be 
tempted to develop complex models, showcasing 
assorted theoretical and methodological advances 
in the field, from a domain perspective, a relatively 
‘simple’ model may seem preferable. Collaborators 
need to be able to mutually explore what is possible, 
while also considering what is useful.

To complete the loop, outputs from machine 
learning models need to feed back into the applica-
tion domain: insights from AI need to be accessible 
in ways that allow the transfer of learning from model 
to user. This implies some level of explainability. 
It is not sufficient for an AI system to produce 
highly accurate results; those results must also 

be interpretable by a domain researcher. As the 
complexity of AI systems increases, however, 
understanding why these systems have produced 
a particular result becomes increasingly challenging. 
While not an issue for all machine learning methods, 
this complexity often results in difficulties explaining 
the functioning of AI systems.

In response, AI researchers have developed 
a variety of different methods to interrogate how AI 
systems work, or why a particular output has been 
produced. Again, to understand which of these 
methods is desirable in the context of a scientific 
application, researchers must collaborate closely 
with domain experts. In the context of pharmaceu-
tical experiments where the aim is to measure how 
many target cells are killed off at different dosages of 
a drug (or drug combination), for example, research-
ers might be seeking to ‘sense-check’ how different 
drug dosages affect the model, before investigating 
specific drugs more rigorously. In astronomical studies, 
researchers are often working with high-dimensional 
datasets with many confounding correlations.
For example, gravitational waves are ripples in 
space-time catalysed by the movement of massive 
bodies in space, such as planets or stars.82 These 
invisible phenomena are studied at observatories 
across the world,83 based on models to describe 

http://cs.AI
https://doi.org/10.48550/arXiv.2204.01160
https://spaceplace.nasa.gov/gravitational-waves/en
http://www.ligo.caltech.edu
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wave signals and the ‘noise’ generated by instru-
ments that measure them.84 Measurements of gravi-
tational waves can be used to infer the properties of 
black holes that create them, such as their location, 
mass, and spin, using simulation-based inference 
to characterise the source of a wave, given the data 
that detects it. To make such methods more efficient 
than existing analytical tools, researchers need to 
take into account the structure that sits underneath 
it: for example, gravitational wave detectors are 

84	 Dax, M., Green, S.R., Gair, J., Macke, J.H., Buonanno, A. and Schölkopf, B. (2021) Phys. Rev. Lett. 127, 241103, Real-Time 
Gravitational Wave Science with Neural Posterior Estimation, https://link.aps.org/doi/10.1103/PhysRevLett.127.241103

85	 Ibid.
86	 Bodin, E., Dai, Z., Campbell, N.D.F. and Ek, C.H. (2020), Black-box density function estimation using recursive partitioning, 

arXiv:2010.13632 [stat.ML], https://doi.org/10.48550/arXiv.2010.13632
87	 See, for example: https://lscsoft.docs.ligo.org/bilby

located across the globe, and their location affects 
the angle at which they detect waves hitting the 
Earth. This structure can be exploited through data 
sampling strategies to help make machine learning 
more efficient.85 An alternative, however, is to use 
deterministic models that already reflect relevant 
physical laws.86 Across these approaches, soft-
ware packages play an important role in enabling 
communication and dissemination of methods for 
wider use.87

https://link.aps.org/doi/10.1103/PhysRevLett.127.241103
https://doi.org/10.48550/arXiv.2010.13632
https://lscsoft.docs.ligo.org/bilby
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Directions

88	 Villar, S., Yao, W., Hogg, D.W., Blum-Smith, B. and Dumitrascu, B. (2022) Dimensionless machine learning: 
Imposing exact units equivariance, arXiv:2204.00887 [stat.ML], https://doi.org/10.48550/arXiv.2204.00887

89	 Ward, W.O.C., Ryder, T., Prangle, D. and Álvarez, M.A. (2019) Black-Box Inference for Non‑Linear Latent Force 
Models, arXiv:1906.09199 [stat.ML], https://doi.org/10.48550/arXiv.1906.09199

90	 See, for example: Kondor, R. and Trivedi, S. (2018), On the Generalization of Equivariance and Convolution 
in Neural Networks to the Action of Compact Groups, arXiv:1802.03690 [stat.ML], https://doi.org/10.48550/
arXiv.1802.03690; Maron, H., Ben-Hamu, H., and Shamir, N. and Lipman, Y. (2019) Invariant and Equivariant Graph 
Networks, arXiv:1812.09902 [cs.LG], https://doi.org/10.48550/arXiv.1812.09902; Dym, N. and Maron, H. (2020) On 
the Universality of Rotation Equivariant Point Cloud Networks, arXiv:2010.02449 [cs.LG], https://doi.org/10.48550/
arXiv.2010.02449

91	 Sundin, I., Peltola, T., Micallef, L., Afrabandpey, H., Soare, M., Majumder, M.M., Daee, P., He, C., Serim, B., 
Havulinna, A., Heckman, C., Jacucci, G., Marttinen, P., Kaski, S. (2018) Improving genomics-based predictions for 
precision medicine through active elicitation of expert knowledge, Bioinformatics, Volume 34, Issue 13, 1 July 2018, 
Pages i395–i403, https://doi.org/10.1093/bioinformatics/bty257

92	 Kangasrääsiö, A., Jokinen, J.P.P., Oulasvirta, A., Howes, A. and Kaski, S. (2019), Parameter Inference for 
Computational Cognitive Models with Approximate Bayesian Computation. Cogn Sci, 43: e12738. https://doi.
org/10.1111/cogs.12738

93	 De Peuter, S., Oulasvirta, A. and Kaski, S. (2021) Toward AI Assistants That Let Designers Design, arXiv:2107.13074 
[cs.HC], https://doi.org/10.48550/arXiv.2107.13074

New modelling approaches and mathematical 
innovations offer exciting opportunities to 
integrate domain knowledge, symmetries and 
invariances into AI systems.88 Integration can 
be achieved in different ways:

	● Data augmentation can help exploit 
invariances and symmetries, resulting in 
improved model performance, by including 
in the data domain knowledge for a model to 
ingest.

	● Symmetries can be embedded in the design 
of deep learning systems, for example 
by using the same convolutional filters in 
different locations of an image, CNNs can 
leverage translation and rotation symme-
tries.

	● Latent force models allow representations 
of known symmetries alongside probabilistic 
factors, enabling integration of mechanistic 
models with unknown forces.89

	● Architectural features can restrict model focus 
to outputs that satisfy symmetries, for example 
using weight sharing, irreducible representa-
tions, or invoking symmetries as constraints.90

	● Loss functions can be deployed to penalise 
predictions that fail to satisfy physical con-
straints or symmetries.

In the process, emerging mathematical ques-
tions include: how can AI learn invariances from 
data? And is it possible to quantify the perfor-
mance gain achieved through this?

Research to develop AI assistants in the 
lab raises interesting questions about learning 
strategies and human-machine collaboration. 
These AI agents would need to be able to learn 
how to assist another agent, in a multi-agent 
decision-making scenario, where goals might 
be unclear, uncertain, or changeable. To tackle 
this challenge:

	● Decision-making with delayed reward or 
zero-shot learning can help agents solve 
tasks when there is little or nothing known 
about the reward function, and no previous 
behaviour to learn from.

	● Interactive knowledge elicitation,91 combin-
ing prior knowledge from cognitive science 
with learning from data,92 and generative user 
models93 can support more effective interac-
tions between user and machine.

https://doi.org/10.48550/arXiv.2204.00887
https://doi.org/10.48550/arXiv.1906.09199
https://doi.org/10.48550/arXiv.1802.03690
https://doi.org/10.48550/arXiv.1802.03690
http://cs.LG
https://doi.org/10.48550/arXiv.1812.09902
http://cs.LG
https://doi.org/10.48550/arXiv.2010.02449
https://doi.org/10.1093/bioinformatics/bty257
https://doi.org/10.1111/cogs.12738
https://doi.org/10.1111/cogs.12738
http://cs.HC
https://doi.org/10.48550/arXiv.2107.13074
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Across these areas, care is needed in the 
design of the points of interaction between 
human and AI system. A core question here 
is: how can AI researchers extract domain 
knowledge from relevant experts and integrate 
it into a machine learning model? Insights from 
human-machine interaction studies and collab-
orative decision-making systems are necessary 
to create effective interfaces between human 
and machine, based on factors such as:

	● What forms of visualisation are helpful 
for human users?

	● What types of interpretabil-
ity or explainability are needed 

for a user to achieve their 
desired interactions?

	● What might be the unintended conse-
quences of human-machine interaction, 
such as over-confidence in results or 
over-reliance on the AI system?

	● What ‘theory of mind’ is needed to antici-
pate how human users might be likely to 
respond to an AI system? A challenge in 
these interactions is that much of the rele-
vant knowledge held by the domain expert 
might be qualitative: an intuition of how a 
system works, developed over a long period 
of study, rather than quantifiable insights.

Box 4: Talks given during this workshop session

Sami Kaski: Virtual laboratories for science, 
assisted by collaborative AI

I introduced two ideas: virtual laboratories 
for science, aiming to introduce an interface 
between algorithms and domain science that 
enables AI-driven scale advantages, and 
AI-based ‘sidekick’ assistants, able to help other 
agents research their goals, even when they 
are not able to yet specify the goal explicitly, 
or it is evolving. Such assistants would ulti-
mately be able to help human domain experts 
run experiments in the virtual laboratories. 
I invited researchers to join the virtual laboratory 
movement, both domain scientists in hosting 
a virtual laboratory in their field and methods 
researchers in contributing new methods to 
virtual laboratories, simply by providing com-
patible interfaces in their code. For developing 
the assistants, I introduced the basic problem 
of agents that are able to help other agents 
reach their goals, also in zero-short settings, 
formulated the problem, and introduced solu-

tions in the simplified setting of prior knowledge 
elicitation, and in AI‑assisted decision and 
design tasks.

David Hogg: Making data analysis more like 
classical physics

The laws of physics are very structured: They 
involve coordinate-free forms, they are equiv-
ariant to a panoply of group actions, and they 
can be written entirely in terms of dimension-
less, invariant quantities. We find that many 
existing machine-learning methods can be very 
straightforwardly modified to obey the rules that 
physical law must obey; physics structure can 
be implemented without big engineering efforts. 
We also find that these modifications often lead 
to improvements in generalization, including 
out-of-sample generalization, in natural–science 
contexts. We have some intuitions about why.

The second example is work by Dan 
Sheldon on analysis of doppler radar to extract 
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bird biomass and motion. The radar measures 
the radial velocity modulo a constant (i.e., the 
velocity wraps around to zero). Previous work 
had attempted to “unwrap” the data using heu-
ristics. Dan instead incorporated the modulus 
operation into the likelihood function and then 
developing an algorithm for maximizing this 
somewhat nasty likelihood. The result has 
revolutionized radar analysis and has been 
deployed in the BirdCast product from the 
Cornell Lab of Ornithology.

The third example is the species occupancy 
model introduced by MacKenzie et al. (2002). 
When human observers conduct wildlife 
surveys, they may fail to detect a species even 
though the species is present. The occupancy 
model combines this detection probability with 
a habitat model. However, the expressiveness of 
the two models (detection and habitat) must be 
carefully controlled. Rebecca Hutchinson and 
I learned this when we tried to replace the linear 
logistic regression models with boosted trees.

In all cases, downstream use of the esti-
mates that come from such data collection 
models mustbe aware of the measurement 
uncertainties. How can we correctly quantify 
those uncertainties and incorporate them in the 
downstream analysis? Maybe there are lessons 
ecologists can learn from physicists?

Mauricio Alvarez: Latent force models

A latent force model is a Gaussian process 
with a covariance function inspired by a differ-
ential operator. Such a covariance function is 
obtained by performing convolution integrals 
between Green’s functions associated with the 
differential operators, and covariance functions 
associated with latent functions. Latent force 
models have been used in several different 
fields for grey box modelling and Bayesian 
inversion. In this talk, I will introduce latent 
force models and several recent works in my 
group where we have extended this framework 
to non-linear problems.

Carl Henrik Ek: Translating mechanistic 
understandings to stochastic models

Statistical learning holds the promise of being 
the glue that allows us to improve knowledge 
parametrised explicitly by a mechanistic model 
with implicit knowledge through empirical 
evidence. Statistical inference provides a nar-
rative of how to integrate these two sources 
of information leading to an explanation of 
the empirical evidence in “light” of the explicit 
knowledge. While the two sources of knowl-
edge are exchangeable in terms of predictive 
performance they are not if our focus is that of 
statistical learning as a tool for science where 
we want to derive new knowledge.

In this talk we will focus on challenges 
associated with translating our mechanistic 
understanding into stochastic models such 
that they can be integrated with data. In par-
ticular, we will focus on the challenges of 
translating composite knowledge. We will show 
how these structures and the computational 
intractabilities they lead to make knowledge 
discovery challenging.

The perceived “success” of machine 
learning comes from application where we have 
large volumes of data such that only simple and 
generic models are needed in order to regular-
ise the problem. This means that much of the 
progress that have been made with predictive 
models are challenging to translate into useful 
mechanisms for scientific applications. In this 
talk we will focus on challenges associated 
with translating our mechanistic understanding 
into stochastic models such that they can be 
integrated with data. In specific we will focus 
on the challenges of translating composite 
knowledge. We will show how these structures 
and the computational intractabilities they lead 
to makes knowledge discovery challenging. 
We will discuss properties that we desire from 
such structures and highlight the large gap that 
exists with current inference mechanism.
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A research agenda in AI for science
‘AI for science’ sits at a nexus of disciplines, methods, 
and communities. Both AI and ‘science’ (broadly 
defined) share a core interest in learning from data. 
From this interest emerge different research directions: 
for AI, questions about the nature of intelligence and 
how to understand the learning process in humans 
and machines; for science, the outputs of this learn-
ing process are the focus, with the aim of adding 
new knowledge about natural, physical, and social 
systems. A distinctive feature of the emerging ‘AI for 
science’ agenda is the ability to move between these 
worlds, using AI to drive progress in science and tak-
ing inspiration from science to inspire progress in AI. 
The result is a continuum of modelling approaches 
along a spectrum from strongly mechanistic to sta-
tistical models, which allow researchers to introduce 
or operate at different levels of abstraction.

The AI for science community therefore combines 
the ambitions of AI research with domain-specific goals 
to advance the frontiers of research and goals in an 
individual discipline, with an engineering focus on 
designing systems that work in deployment. From 
these interfaces emerges a research agenda that – if 
successful – promises to accelerate progress across 
disciplines. Inspired by discussions at the Dagstuhl 
workshop, a list of research questions arising from this 
agenda is given in Annex 2. These span three themes:

Building AI systems for science: Attempts to 
deploy AI in the context of scientific discovery have 
exposed a collection of gaps in current machine 
learning and AI capabilities. Further work is needed 
to develop the technical capabilities that will allow AI 
tobe used more effectively in research and innova-
tion; developing those capabilities also offers oppor-
tunities to contribute to wider attempts to deliver 
sophisticated AI systems. Areas for progress include:

	● Advancing methods, software and toolkits for 
high-quality simulation and emulation, which 
integrate effective uncertainty quantification 
and leverage advances in machine learn-
ing robustness to ensure the operate safely 
and effectively.

	● Detecting scientifically meaningful struc-
ture in data, through advances in causal 
machine learning.

	● Encoding domain knowledge in AI systems 
through integration of scientific laws, principles, 
symmetries, or invariances in machine learn-
ing models, and through virtual, autonomous 
systems to make research more effective.

Combining human and machine intelligence: 
Successful deployment of AI in science requires 
effective interactions between human, domain 
and machine intelligence across all stages of the 
deployment pathway. AI systems can be made more 
effective by integrating pre-existing knowledge about 
the system of study, but mechanisms are needed 
to extract and encode that knowledge. Interfaces 
are also required in the reverse direction. Translat-
ing the outputs of AI analysis to increased human 
capability requires an understanding of what insights 
are relevant, how they are best communicated, and 
the cultural environment that shapes the conduct of 
science. Areas for progress include:

	● Designing interfaces between humans and 
machines or AI agents that can extract, for-
malise, and assimilate knowledge that domain 
researchers have acquired, including tacit knowl-
edge, and that communicate new knowledge 
back to the user as actionable insights.

	● Building mechanisms for explainability that 
allow researchers to interrogate why and how 
an AI system delivered a particular result, with 
the explanations provided being tailored to 
user need.

	● Accelerating the pace of knowledge creation 
and use, through systems that mine the exist-
ing research knowledge base or that automate 
repetitive or time-consuming elements of the 
research process.
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Influencing practice and adoption: By learning 
from recent experiences of deploying AI for sci-
ence, the field has an opportunity to promote wider 
uptake and progress in both scientific domains 
and in AI research. This requires capturing both 
the knowledge that the community has already 
generated, about how to design AI systems, and 
the know-how about how to overcome practical 
challenges that accompanies it, while taking action 
to grow the community of researchers excited 
about the potential of AI in science. Areas for 
progress include:

	● Supporting new applications, through chal-
lenge-led research programmes that promote 
interdisciplinary collaborations and sup-

port co-design of AI systems to help tackle 
scientific challenges.

	● Developing toolkits and user guides that allow 
researchers to understand which AI tools are 
suitable for which purposes, and how to deploy 
those tools in practice.

	● Sharing skills and know-how, through commu-
nity outreach that disseminates knowledge and 
know-how in how to use AI.

Together, these areas for action highlight the impor-
tance of interfaces – between researchers and 
between modelling approaches – in shaping the 
development of AI for science (Figure 3).

Figure 3: Interfaces between different modelling communities

Figure 3: Interfaces between machine learning and domain researchers, and between data-driven and mechanistic models. 
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Accelerating progress in AI 
for science

94	 See, for example: the EU’s Innovation Missions https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/
funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en and UN SDG’s https://sdgs.un.org/goals

Building on the impressive advances that machine 
learning has already supported in many domains, 
widespread adoption of AI for research has the 
potential to catalyse a new wave of innovations 
that in turn could drive greater health, wealth, and 
wellbeing. The question facing researchers, funders, 
and policymakers today is how to harness that 
potential. The challenge is to build capability across 
the research landscape, connect areas of exper-
tise to areas of need, and to accelerate the transfer 
of successful ideas between domains.

The experiences of deploying AI for science 
described in this document, and the research 
agenda that results from these experiences, 
suggest a roadmap for action. That roadmap charts 
a pathway to create an enabling environment for 
AI in science, by advancing research that delivers 

AI methods to support scientific discovery, build-
ing tools and resources to make AI accessible, 
championing interdisciplinary research and the 
people pursuing it, and nurturing a community at 
the interface of these different domains. Progress 
across these areas can unlock scientific and meth-
odological advances in AI for science, while also 
helping answer an emerging question about whether 
there exists a core discipline of ‘AI for science’. 
The shared themes and interests that emerge from 
research projects at the interface of AI and sci-
entific domains suggest that there is potential or 
‘AI for science’ to surface as a distinct speciality in 
computer science. In parallel, domain specific efforts 
to drive the adoption of AI as an enabler of innova-
tion are also needed to deliver the benefits of AI for 
scientific discovery.

Advance new methods and applications
Efforts to deploy AI in the context of research have 
highlighted cross‑cutting challenges where further 
progress in AI methods and theory is needed to cre-
ate tools that can be used more reliably and effec-
tively in the scientific context. Effective simulations 
are needed to study the dynamics of complex systems; 
causal methods to understand why those dynamics 
emerge; and integration of domain knowledge to 
relate those understandings to the wider world. While 
elements of these research challenges are shared with 
other fields – topics such as robustness, explainabil-
ity, and human-machine interaction also come to the 
fore in fields such as AI ethics, for example – they 
share an intersection in the use of AI for science, 
in the context of efforts to bridge mechanistic and 
data‑driven modelling.

Alongside these ‘AI’ challenges are a collec-
tion of ‘science’ challenges, where researchers, 
policymakers and publics have aspirations for AI 
to deliver real-world benefits.94 Such challenges 

offer the opportunity to accelerate progress in AI, 
while facilitating interdisciplinary exchanges, and 
opening the field to input from citizen science or 
other public engagement initiatives. In develop-
ing these research missions, care is needed to 
define cross-cutting questions or challenges that 
broaden scientific imaginations, rather than restrict-
ing them. The process of converting a complicated 
scientific problem into something tractable with AI 
necessarily involves some narrowing of focus; to 
be successful, mission-led innovation efforts must 
achieve this focus without losing meaning, or cre-
ating benchmarks that misrepresent the complexity 
of the real-world challenge.

Defining shared challenges could help rally the 
AI for science community and drive progress in both 
methods and applications of AI in science. There are 
already examples of how such challenges can build 
coalitions of researchers across domains from which 
the field can draw inspiration. These include the 

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe_en
https://sdgs.un.org/goals
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GREAT08 project, which developed image analysis 
techniques to study gravitational lensing;95 the Open 
Problems in Single Cell Biology challenge, which 
convened the machine learning community to make 
progress in Multimodal Single-Cell Data Integra-
tion;96 and the SENSORIUM challenge, focused 
on advancing understandings of how the brain 
processes visual inputs.97 In pursuing this agenda, 

95	 Bridle, S., Balan, S.T., Bethge, M., Gentile, M., Harmeling, S., Heymans, C., Hirsch, M., Hosseini, R., Jarvis, M., Kirk, D., Kitching, T., 
Kuijken, K., Lewis, A., Paulin-Henriksson, S., Schölkopf, B., Velander, M., Voigt, L., Witherick, D., Amara, A., Bernstein, 
G., Courbin, F., Gill, M., Heavens, A., Mandelbaum, R., Massey, R., Moghaddam, B., Rassat, A., Réfrégier, A., Rhodes, J., 
Schrabback, T., Shawe-Taylor, J., Shmakova, M., van Waerbeke, L., Wittman, D. (2010) Results of the GREAT08 Challenge: an 
image analysis competition for cosmological lensing, Monthly Notices of the Royal Astronomical Society, Volume 405, Issue 3, 
July 2010, Pages 2044–2061, https://doi.org/10.1111/j.1365-2966.2010.16598.x

96	 For further information, see: https://openproblems.bio/neurips_2021
97	 For further information, see: https://sensorium2022.net/home

researchers can leverage well-established protocols 
in open-sourcing materials and sharing documen-
tation to help ensure research advances are rapidly 
and effectively disseminated across disciplines. The 
result should be more effective methods, and an 
agile research environment where researchers can 
flex methods across disciplines.

Invest in tools and toolkits
Complementing these efforts to build and share 
knowledge, well-designed software tools can help 
make accessible the craft skills (or know-how) that 
make AI for science projects successful. Modelling 
is a core component of all AI for science projects. 
In some aspects, the task for the field can be 
thought of as charting a path between the statisti-
cian, whose effectiveness comes from proximity to 
the domain but whose methods struggle to scale, 
and the mathematician, whose tools are adopted 
across domains but with some loss of meaning 
as the distance between method-generator and 
adopter increases.

The energy already invested in building effec-
tive machine learning models can be leveraged 
for wider progress across domains through invest-
ment in toolkits that support the generalisation of 
effective approaches. Wide‑spectrum modelling 
tools could offer ‘off the shelf’ solutions to common 
AI for science research questions. The challenge 
for such toolkits is to create an effective interface 
between tool and user. Connecting with the field of 
human-computer interaction could generate design 
insights or protocols to help create more effective 
human‑AI interfaces.

Best practices in software engineering 
can help, through documentation that supports 

users to successfully deploy modelling tools. 
User guides – or taxonomies of which models 
are best suited for which purposes and under 
what circumstances – can also help make 
accessible to non-expect users the accumulated 
know-how that machine learning researchers 
have gained through years of model development 
and deployment.

A related engineering challenge is that of data 
management and pipeline-building. To interrogate 
how a model works, why a result was achieved, 
or whether an AI system is working effectively, 
researchers often benefit from being able to 
track which data contributed to which output. 
The data management best practices that allow 
such tracking need to be embedded across AI for 
science projects. Data management frameworks – 
such as the FAIR data principles – have already 
been developed with the intention of making data 
more available, and useful, for research. Further 
investment is now needed in efforts to implement 
those principles in practice.

Investment in these foundational tools and 
resources can help build understanding of which 
AI methods can be used and for what purposes, 
lowering the barriers to adopting AI methods 
across disciplines.

https://doi.org/10.1111/j.1365-2966.2010.16598.x
https://openproblems.bio/neurips_2021
https://sensorium2022.net/home
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Build capability across disciplines

  98	 A comparison here can be drawn with the development of statistics as an enabling discipline for many domains: statisticians have 
devoted time to understanding domain practices and integrating their work within those practices, often dedicating significant 
resource to understand the nature of the datasets with which they are working, before introducing modelling ideas.

  99	 Programme website available at: https://uni-tuebingen.de/en/research/core-research/cluster-of-excellence-machine-learning/home
100	 Programme website available at: https://acceleratescience.github.io

Central to progress in both research and toolkit 
engineering is the availability of talented researchers 
with a passion for advancing science through AI. 
People matter at all stages of the AI development 
and deployment pipeline. Successful projects rely 
on researchers who are motivated to work at the 
interface of different domains; collaborators who 
can explain and communicate core concepts in 
their work across disciplinary boundaries; engineers 
who can translate the needs of different users into 
AI toolkits; and convenors that can inspire wider 
engagement with the AI for science agenda.

Building these capabilities requires multiple 
points of engagement. Domain researchers need 
access to learning and development activities that 
allow them to understand and use foundational 
methods in machine learning, whether as formal 
training or through the availability of tutorials or 
user guides. AI researchers need access to the 
scientific knowledge that should shape the methods 
they develop, the skills to translate their advanced 
knowledge to materials that can be shared for wider 
use, and the capacity to dedicate time and resource 
to learning about domain needs.98 Both need skills 
in communication, organisation, and convening 
to operate across disciplines. Without such 

capability-building, disciplines risk remaining siloed; 
domains developing unrealistic expectations about 
what AI can deliver in practice, and AI losing touch 
with the scientific questions that are most meaningful 
to domains.

Institutional incentives shape how individ-
uals engage (or not) with such interdisciplinary 
exchanges. Interdisciplinary research often takes 
longer and lacks the outlets for recognition avail-
able to those working in single domains, affecting 
both the motivation of and opportunities for career 
progression that are open to those working at 
the interface of different disciplines. Much of 
the engineering work required to make data 
and AI accessible beyond a specific project and 
useful to a wider community is also traditionally 
unrecognised by academic incentive structures. 
Aligning individual and institutional incentives 
in support of interdisciplinarity is a long-standing 
challenge in research, and one that becomes more 
critical to address in the context of developments 
in AI. In this context, there may be new opportu-
nities to recognise and reward successes in AI for 
science, whether through new fellowships, prizes, 
or ways of promoting the work done by those at 
this interface.

Grow communities of research and practice
The areas for action described above feed into and 
from each other. Progress in research and appli-
cation can be leveraged to inspire a generation 
of researchers to pursue interdisciplinary projects; 
effective toolkits can make such progress more 
likely; skills-building initiatives can prime researchers 
to be able to use these toolkits; and so on, to create 
an environment where researchers and research 
advances transition smoothly across disciplines, 
leading to a rising AI tide that lifts all disciplines. Com-
munities of research and practice are the backdrop 
for creating such positive feedback loops.

A collection of AI for science initiatives are 
already building links across the research land-
scape. The Machine Learning for Science Cluster of 
Excellence at the University of Tübingen is leverag-
ing the strength of its local ecosystem in AI to drive 
wider progress in research and innovation;99 the 
Accelerate Programme for Scientific Discovery at the 
University of Cambridge is building bridges across 
disciplines, building a community passionate about 
opportunities in AI for science;100 the University of 
Copenhagen’s SCIENCE AI Centre provides a focal 
point for AI research and education in its Faculty for 

https://uni-tuebingen.de/en/research/core-research/cluster-of-excellence-machine-learning/home/
https://acceleratescience.github.io
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Science;101 New York University’s Center for Data 
Science hosts interdisciplinary faculty pursuing 
innovative research and education;102 the University 
of Wisconsin-Madison’s American Family Insur-
ance Data Science Institute is developing strategic 
partnerships to accelerate the use of data science 
in research;103 new investments by Schmidt Futures 
across a network of research institutions are sup-
porting new postdoctoral fellowships at the interface 
of AI and sciences.104 Together, these initiatives 
demonstrate the appetite for progress in AI for science.

There is an opportunity today to leverage these 
emerging interests into a wider movement. Existing 
initiatives can drive capability‑building, by making 
training and user guides open, reaching out to engage 
domain researchers in skills-building activities, and 
fostering best practice in software and data engineer-
ing across disciplines. The links they establish across 
research domains can form the basis of new commu-
nication channels, whether through discussion forums, 
research symposia, or newsletters to share devel-
opments at the interface of AI and science. These 
communications can be deployed to raise the profile 
of people and projects at this interface, celebrating 
successes, sharing lessons, and demonstrating the 
value of interdisciplinary work. Together, they can 
help develop an infrastructure for AI in science.

That infrastructure may also benefit from 
new institutional interventions to address 

101	 Programme website available at: https://ai.ku.dk
102	 Programme website available at: https://cds.nyu.edu
103	 Programme website available at: https://datascience.wisc.edu/institute
104	 Schmidt Futures (2022) Schmidt Futures Launches $148M Global Initiative to Accelerate AI Use in Postdoctoral Research, available 

at: https://www.schmidtfutures.com/schmidt-futures-launches-148m-global-initiative-to-accelerate-ai-use-in-postdoctoral-research

long-standing challenges in interdisciplinary AI. New 
journals could provide an outlet to publish and rec-
ognise high-quality AI for science research, bringing 
in contributions from multiple disciplines and helping 
translate lessons across areas of work. Membership 
organisations could help foster a sense of belong-
ing and community for researchers working at the 
interface of AI, science, and engineering, developing 
career pathways and incentives. Efforts to convene 
across disciplines can also catalyse new connec-
tions and collaborations.

Emerging from these efforts is a paradigm shift 
in how to drive progress in science. Historically, 
a small number of foundational texts have been 
the catalyst that changed how researchers studied 
the world; Newton’s Principia; Darwin’s Origin of 
Species; and so on. For much of its modern history, 
scientific knowledge has been transmitted through 
textbooks; canonical descriptions of the current 
state of knowledge. Today, the transformative poten-
tial of AI is driven by its pervasiveness; its impact in 
science will be achieved through integration across 
disciplines. This integration requires widespread 
mobilisation, convening machine learning research-
ers, domain experts, citizen scientists, and affected 
communities to shape how AI technologies are 
developed and create an amenable environment 
for their deployment. It takes a community.

AI and science: building the interface
Advances in AI have disrupted traditional ways 
of thinking about modelling in science. Where 
researchers might previously have conceptualised 
models as mechanistic – reflecting known forces 
in the world – or data-driven, the ‘AI for science’ 
methods that are emerging today reject this sep-
aration. They are both, combining insights from 
mechanistic and data-driven methods, integrating 
methods to create something new. What follows 
from these developments is a spectrum of modelling 
approaches, which researchers can deploy flexibly 
in response to the research question of interest.

Today, the field of AI for science is characterised 
by intersections. Between AI and scientific domains; 
between science and engineering; between knowl-
edge and know-how; between human and machine. 
It operates across disciplinary boundaries, across 
scales from the atomic to the universal, and across 
both the mission to understand intelligence and the 
quest to deploy human intelligence to understand 
the world. Emerging from these missions is a contin-
uum of models and methods that allow researchers 
to work across domains, extracting the knowledge 
that humans have acquired, and levels of inquiry, 

https://ai.ku.dk
https://cds.nyu.edu
https://datascience.wisc.edu/institute/
https://www.schmidtfutures.com/schmidt-futures-launches-148m-global-initiative-to-accelerate-ai-use-in-postdoctoral-research/
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enhancing that knowledge and returning it in 
actional form.

As both a domain itself and an enabler of 
other disciplines, the power of AI in science lies 
in its ability to convene diverse perspectives 

in ways that accelerates progress across research 
areas. AI for science is a rendezvous point. Its next 
wave of development will come from taking strength 
from its diversity, and bringing more people into 
its community.
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Annex 1: Participants at Machine Learning for Science: 
Bridging Data-driven and Mechanistic Modelling 
(Dagstuhl Seminar 22382, 18–23 September 2022)

Organisers: Philipp Berens, Kyle Cranmer, Neil Lawrence, Jessica Montgomery, Ulrike von Luxburg. 
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Annex 2: Research questions arising from the 
‘AI for science research agenda’ discussion during 
the Dagstuhl workshop

Building AI systems for science

	● How can AI systems accurately generalise from 
finite observations? How can they detect causal-
ity or structure from finite observations?

	● What is the computational cost of complexity, 
and what methods can help manage this?

	● What forms of system calibration and uncertainty 
quantification are useful in the context of scientific 
discovery? Are theoretical guarantees necessary?

	● What new forms of explainability or interpretability 
could facilitate the deployment of AI in science?

	● How could AI support generalisation from a small 
number of observations? What methods could 
enable few – or one-shot learning?

	● How can AI researchers build meaningful mod-
els from data to accurately represent causal 
mechanisms in the system of study? How can 
researchers identify the most effective model 
for their system of study?

	● What does it mean to understand a model? 
How can researchers combine explainability 
with complexity?

	● How can AI methods be made robust and easy 
to use in deployment by domain scientists?

	● How can advances in simulation methods be 
applied in domains where the system at hand 
is less easily described by equations?

	● What advances are needed to expand the use 
of simulations in science? How can AI help sim-
ulate laboratory experiments or environments, 
helping make more efficient different elements 
of the scientific process? How might this be 
expanding in the long-term, for example to 
planning experimental design or helping identify 
where data is missing?

	● How can ‘digital siblings’ be used to explore 
the impact of different interventions on 
complex systems?

Combining human and machine intelligence

	● How can AI researchers best extract, formal-
ise and assimilate the knowledge that domain 
researchers have acquired? What forms of knowl-
edge representation can formalise scientific under-
standings of the world, translating these to objective 
functions for AI systems? What forms of human-AI 
engagement can make use of the ‘qualitative’ 
knowledge – or intuitions about a system – that 
domain researchers have accumulated?

	● How can AI capture the qualitative understanding 
that researchers have of their domain to more 
accurately or effectively characterise a system?

	● How can AI be effectively deployed to mine the 
existing research knowledge base – for example, 
papers, databases, and so on – to extract 
new insights?

	● Where can automation support research pro-
gress? Which elements of the scientific process 
could be automated, and where is human 
input vital?

	● What forms of collaboration are needed 
to effectively specify helpful outputs from 
an AI system?
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	● How can insights from AI analysis be returned 
to researchers in an actionable way? What mix 
of AI design, engineering, social interaction, and 
education can make effective interfaces between 
domain researchers and AI systems?

	● How can the outputs of AI systems be made 
interpretable for scientific users?

	● How can AI researchers better understand and 
design for the forms of interpretability that reso-
nate with domain researchers?

	● What processes of collaboration or co-design 
can help describe what scientists ‘need to know 
from an AI system?

	● What best practices or methods can be deployed 
to effectively communicate uncertainty from AI 
systems to human users?

Influencing practice and adoption

	● What are the craft skills in AI for science? What 
‘know how’ is necessary to make AI work effec-
tively in practice?

	● What skills-building or forms of outreach can 
help take AI tools out of the AI community and 
into ‘the lab’?

	● How has machine learning been used most 
effectively for research and innovation? What 
best practices, or lessons, do existing efforts 
in AI for science offer?

	● Which AI tools are suitable for which purposes, 
disciplines, or experimental designs? Is it possi-
ble to create a taxonomy for science?

	● Are there generalisable methods or conclusions 
that can be taken from domain-specific efforts to 
deploy AI for science?
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This document was produced in 2022 following 
discussions at the Dagstuhl Seminar ‘Machine 
Learning for Science: Bridging Data-driven and 
Mechanistic Modelling’ by the organising team 
consisting of Philipp Berens, Kyle Cranmer, 
Neil Lawrence, Jessica Montgomery, and 
Ulrike von Luxburg. Thank you to participants 
at the meeting that inspired its contents. 
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